Агонист — Википедия
Материал из Википедии — свободной энциклопедии
Не следует путать с протагонистом — главным героем литературного произведения.Агонист — химическое соединение (лиганд), которое при взаимодействии с рецептором изменяет его состояние, приводя к биологическому отклику. Обычные агонисты увеличивают отклик рецептора, обратные агонисты уменьшают его, а антагонисты блокируют действие рецептора[1].
Агонисты могут быть эндогенными (например, гормоны и нейротрансмиттеры) и экзогенными (лекарства). Эндогенные агонисты в норме производятся внутри организма и опосредуют функцию рецептора. К примеру, дофамин является эндогенным агонистом дофаминовых рецепторов.
Физиологическим агонистом называется вещество, вызывающее аналогичный отклик, но действующее на иной рецептор.
Спектр эффектов[править | править код]

Суперагонист — соединение, способное вызывать более сильный физиологический ответ, чем эндогенный агонист. Полный агонист — соединение, вызывающее такой же отклик, как эндогенный агонист (например, изопреналин, агонист β-адренорецепторов). В случае меньшего отклика соединение называют частичным агонистом (например, арипипразол — частичный агонист дофаминовых и серотониновых рецепторов).
В случае, если у рецептора имеется базальная (конститутивная) активность, некоторые вещества — обратные агонисты — могут уменьшать её. В частности, обратные агонисты рецепторов ГАМКA обладают анксиогенным или спазмогенным действием, однако могут усиливать когнитивные способности[2][3].
Механизм[править | править код]
Если для активации рецептора требуется взаимодействие с несколькими различными молекулами, последние называются коагонистами. В качестве примера можно привести NMDA-рецепторы, активирующиеся при одновременном связывании глутамата и глицина.
Необратимым агонист называют в случае, если после связывания с ним рецептор становится постоянно активированным. В данном случае не имеет значения, образует ли лиганд ковалентную связь с рецептором либо взаимодействие является нековалентным, но чрезвычайно термодинамически выгодным.
Селективность[править | править код]
Селективным агонист называют в том случае, если он активирует лишь один конкретный рецептор либо подтип рецепторов. Степень селективности может различаться: дофамин активирует рецепторы пяти различных подтипов, но не активирует серотониновые рецепторы. В настоящее время встречаются экспериментальные подтверждения возможности различного взаимодействия одних и тех же лигандов с одними и теми же рецепторами: в зависимости от условий одно и то же вещество может быть полным агонистом, антагонистом или обратным агонистом.
Активность агониста (англ. potency) обратно пропорциональна EC50, концентрации агониста, вызывающей полумаксимальный отклик рецептора. Чем ниже EC50, тем более активен агонист; сравнение активности лигандов осуществляют с помощью этой величины. Поскольку разные вещества вызывают один и тот же физиологический эффект в различных концентрациях, наибольший интерес при разработке лекарств представляют те из них, которые вызывают отклик в меньших концентрациях.
- ↑ Neubig RR, Spedding M, Kenakin T, Christopoulos A. International Union of Pharmacology Committee on Receptor Nomenclature and Drug Classification. XXXVIII. Update on Terms and Symbols in Quantitative Pharmacology (англ.) // Pharmacol Rev : журнал. — 2003. — Vol. 55, no. 4. — P. 597-606. — doi:10.1124/pr.55.4.4.
- ↑ Wang F, Xu Z, Yuen CT, Chow CY, Lui YL, Tsang SY, Xue H. 6,2′-Dihydroxyflavone, a subtype-selective partial inverse agonist of GABAA receptor benzodiazepine site (англ.) // Neuropharmacology : журнал. — Elsevier, 2007. — Vol. 53, no. 4. — P. 574-582. — doi:10.1016/j.neuropharm.2007.06.018. — PMID 17681556.
- ↑ Atack JR. GABAA receptor subtype-selective modulators. II. α5-selective inverse agonists for cognition enhancement (англ.) // Curr Top Med Chem : журнал. — Bentham Science, 2011. — Vol. 11, no. 9. — P. 1203-1214. — PMID 21050171.
Агонисты и антагонисты рецепторов — SportWiki энциклопедия
Агонист (рис. А) имеет сродство к рецептору, видоизменяет рецепторный белок, что в свою очередь влияет на функции клетки («внутренняя активность»). Биологическая эффективность агонистов, т. е. их влияние на функции клетки, зависит от того, насколько активация рецепторов может повлиять на передачу сигнала в клетке.
Рассмотрим два агониста А и В (рис. Б). Агонист А может вызвать максимальный эффект даже при связывании части рецепторов. Агонист В с таким же сродством, но с ограниченной способностью активировать рецептор (ограниченная внутренняя активность) и влиять на передачу сигнала может связываться со всеми рецепторами, но вызывает лишь ограниченный эффект, т. е. проявляет ограниченную эффективность. Агонист В является частичным агонистом. Потенциал агониста характеризуется концентрацией ЕС50, при которой достигается половина максимального эффекта.
Антагонисты (А) ослабляют действие агонистов: они влияют «антагонистически». Полные антагонисты имеют сродство к рецепторам, однако их связь не приводит к изменению клеточной функции (отсутствие внутренней активности). При одновременном применении агониста и полного антагониста результат их конкурентного действия определяется сродством и концентрацией каждого из этих веществ. Так, при повышении концентрации агониста, несмотря на противодействие антагониста, может быть достигнут полный эффект (рис. В): т. е. в присутствии антагониста кривая концентрация агониста — эффект смещается вправо по абсциссе к более высоким значениям концентрации. Модель молекулярного механизма действия агонистов/антагонистов (А)
Агонист вызывает переход в активную конформацию. Агонист присоединяется к неактивному рецептору и способствует его переходу в активную конформацию. Антагонист присоединяется к неактивному рецептору, при этом не меняя его конформацию.
Агонист стабилизирует спонтанно возникающую активную конформацию. Рецептор может спонтанно перейти в активную форму. Однако статистическая вероятность такого события очень мала. Агонист селективно присоединяется к рецепторам, находящимся в активной конформации, и поддерживает это состояние рецептора. Антагонист обладает сродством к «неактивным» рецепторам и поддерживает их конформацию. Если спонтанная активность рецептора практически отсутствует, то введение антагониста не приводит к значимому эффекту. Если система имеет высокую спонтанную активность, антагонист оказывает действие, противоположное действию агониста: обратный агонист. «Истинный» антагонист без внутренней активности имеет одинаковое сродство как к активному, так и к неактивному рецептору и не влияет на исходную активность клетки. Частичный агонист не только селективно присоединяется к активному рецептору, но может частично связываться с неактивной формой. Другие формы антагонистического действия
Аллостерический антагонизм. Антагонист присоединяется к рецептору вне зоны присоединения агониста и снижает сродство агониста к этому рецептору. При аллостерическом синергизме сродство агониста усиливается.
Функциональный антагонизм. Два агониста посредством разных рецепторов влияют на один и тот же параметр (например, просвет бронхов) в противоположных направлениях (адреналин вызывает расширение, гистамин — сужение).
Агонисты, синергисты и антагонисты
Даны определения мышц-агонистов, мышц-синергистов и мышц-антагонистов. Показано, что при выполнении движения мышцы в одной ситуации могут быть антагонистами, а в другой – синергистами. Наличие мышц-антагонистов необходимо для выполнения двигательных действий, так как мышца может лишь тянуть костное звено при сокращении, но не может его толкать.
Агонисты, синергисты и антагонисты
Давайте продолжим разговор о различных классификациях скелетных мышц и поговорим об антагонистах, синергистах и агонистах. Эти определения я взяла из прекрасной книги Раисы Самуиловны Персон «Мышцы-антагонисты в движениях человека».
Определения
Мышцами-антагонистами называют такие две мышцы (или две группы мышц) одного сустава, которые при сокращении осуществляют тягу в противоположные стороны.
Мышцами-синергистами называют мышцы одного сустава, которые тянут в одном и том же направлении.
Из двух мышц-антагонистов ту, которая осуществляет данное движение (то есть выполняет основную задачу), называют агонистом, а другую — антагонистом.
Примеры мышц-антагонистов
Верхние конечности
1. Сгибание предплечья осуществляет двуглавая мышца плеча (m.biceps brachii), а разгибание предплечья — трехглавая мышца плеча (m. triceps brachii). Эти две мышцы являются мышцами-антагонистами, потому что они осуществляют тягу в противоположных направлениях относительно локтевого сустава. Одна мышца (двуглавая мышца плеча) отвечает за сгибание, а вторая (трехглавая мышца плеча) отвечает за разгибание.
2. Сгибание плеча (плечевой кости) осуществляют мышцы: дельтовидная (передние пучки), большая грудная мышца, клювовидно-плечевая, двуглавая мышца плеча. Разгибание плеча (плечевой кости) осуществляют мышцы-антагонисты: задняя часть дельтовидной, широчайшая мышца спины, подостная, малая круглая большая круглая, длинная головка трехглавой мышцы плеча.
Нижние конечности
3. Сгибание голени осуществляет среди прочих двуглавая мышца бедра
(m. biceps femoris), а разгибание голени — четырехглавая мышца бедра (m.quadriceps femoris). Эти две мышцы являются мышцами-антагонистами, потому что они осуществляют противоположную тягу относительно коленного сустава. Одна мышца (двуглавая мышца бедра) отвечает за сгибание, а вторая (четырехглавая мышца бедра) — отвечает за разгибание.4. Сгибание стопы осуществляет трехглавая мышца голени (m. triceps surae) в состав которой входит икроножная мышца (m. gastrocnemius) и камбаловидная мышца (m. soleus). Разгибание стопы осуществляет передняя большеберцовая мышца (m. tibialis anterior). Эта мышца является антагонистом трехглавой мышце голени.
Примеры мышц-синергистов
Верхние конечности
1. Сгибание предплечья осуществляют мышцы: двуглавая мышца плеча, плечевая, плечелучевая. Это мышцы-синергисты, потому что это мышцы одного сустава, которые тянут в одном направлении (осуществляют сгибание предплечья).
Нижние конечности
2. Разгибание голени осуществляют четыре мышцы: латеральная широкая мышца бедра, медиальная широкая мышца бедра, промежуточная широкая мышца бедра, прямая мышца бедра. Это четыре головки четырехглавой мышцы бедра. Это мышцы-синергисты, так как они тянут в одном направлении (осуществляют разгибание голени).
3. Сгибание голени осуществляют мышцы: двуглавая мышца бедра, полусухожильная, полуперепончатая, портняжная, тонкая, подколенная, икроножная, подошвенная. Это мышцы-синергисты, так как они тянут в одном направлении (осуществляют сгибание голени).
4. Подошвенное сгибание стопы осуществляют: трехглавая мышца голени (икроножная и камбаловидная), подошвенная мышца, задняя большеберцовая, длинный сгибатель большого пальца, длинный сгибатель пальцев, длинная малоберцовая, короткая малоберцовая. Это мышцы-синергисты, так как они тянут в одном направлении (сгибают стопу).
Примеры мышц-агонистов и антагонистов
1.Сгибание предплечья осуществляет двуглавая мышца плеча (m.biceps brachii), а разгибание предплечья — трехглавая мышца плеча (m. triceps brachii). Если мы рассматриваем сгибание предплечья как основное движение, то мышцей-агонистом будет двуглавая мышца плеча (она осуществляет данное движение), а мышцей-антагонистом — трехглавая мышца плеча. Она отвечает за разгибание.
2. Рассматриваем разгибание голени. Мышцей-агонистом будет четырехглавая мышца бедра (она осуществляет данное движение). А мышцами-антагонистами будут мышцы сгибатели бедра: двуглавая мышца бедра, полусухожильная, полуперепончатая, портняжная, тонкая, подколенная, икроножная и подошвенная.
Более подробно строение и функции мышц описаны в моих книгах «Гипертрофия скелетных мышц человека» и «Биомеханика мышц«
Особенности функционирования мышц
1. Наличие мышц-антагонистов необходимо, так как мышца может лишь тянуть кость, но не может ее толкать. Поэтому, чтобы костное звено выполняло, например, сгибание и разгибание, необходимо наличие двух мышц. Одна из мышц будет отвечать за сгибание в суставе, а другая – за разгибание.
2. При выполнении двигательных действий мышцы-антагонисты не обязательно работают попеременно. Еще в начале ХХ века немецкий ученый R. Wagner (1925) показал, что в зависимости от условий внешнего силового поля меняется соотношение фаз активности мышц-антагонистов. Полное совпадение активности мышц с перемещением наблюдается только при движениях против сил трения. При работе против сил инерции мышца-агонист активна только на протяжении первой фазы движения. Затем оно продолжается по инерции при возрастающей активности мышцы-антагониста, которая тормозит движение (рис.1).
Рис.1. Работа мышц-антагонистов против внешних сил разной природы: А-силы трения; Б — силы инерции; В — силы упругости (R.Wagner, 1925)
3. На активность мышц-антагонистов сильно влияет темп движений. При выполнении движения в медленном темпе активность мышц-антагонистов соответствует фазам движения, за которые они отвечают. А именно: при сгибании активность проявляют мышцы, отвечающие за сгибание, а при разгибании активность проявляют разгибатели. Увеличение темпа движения приводит к тому, что при в конце фазы сгибания может активироваться мышца-разгибатель. В данном случае мышца-разгибатель (антагонист) действует как тормоз. При быстрых движениях также существуют фазы одновременной активности мышц-антагонистов (А.В. Самсонова, 1998).
3. При выполнении движения мышцы в одной ситуации могут быть антагонистами, а в другой – синергистами. Например, двуглавая мышца плеча является синергистом мышцы круглый пронатор при сгибании предплечья. А при ротации предплечья они работают как антагонисты, так как двуглавая осуществляет супинацию предплечья, а круглый пронатор – пронацию.
Реципрокная иннервация
Для того, чтобы мышца-агонист могла выполнять свою задачу, мышца-антагонист должна быть расслаблена. На эту особенность обратил внимание еще Рене Декарт в 17 веке при анализе движений глаз. Затем исследования работы мышц-антагонистов были продолжены. Было установлено, что существует механизм, который управляет работой мышц-антагонистов в центральной нервной системе. Это механизм получил название реципрокной иннервации. Большой вклад в изучение этого механизма внес лауреат Нобелевской премии Чарльз Скот Шеррингтон (рис.2). Было установлено, что при возбуждении мышцы-агониста, ЦНС тормозит работу мышцу-антагониста (рис.3).
Рис.2. Шеррингтон Ч.С.
Рис.3. Схема реципрокной иннервации мышц-антагонистов (Шеррингтон Ч.С., 1969) При поступлении двигательного импульса на мышцу (показано знаком «+») мышца-антагонист тормозится (показано знаком «-«)
Литература
- Иваницкий М.Ф. Анатомия человека: Учебн. для ин-тов физ. культ. — М.: Физкультура и спорт, 1985.- 544 с.
- Ванек Ю. Спортивная анатомия. – М.: Издательский центр Академия, 2008. 304 с.
- Персон Р.С. Мышцы-антагонисты в движениях человека.- М.: Наука, 1965, 114 с.
- Самсонова, А.В. Моторные и сенсорные компоненты биомеханической структуры физических упражнений /А.В. Самсонова: автореф. дис…докт. пед. наук.- СПб.- 1998.- 48 с.
- Самсонова, А.В. Биомеханика мышц [Текст]: учебно-методическое пособие /А.В. Самсонова Е.Н. Комиссарова /Под ред. А.В. Самсоновой /Санкт-Петербургский гос. Ун-т физической культуры им. П.Ф. Лесгафта.- СПб,: [б.н.], 2008.– 127 с.
- Самсонова А.В. Гипертрофия скелетных мышц человека: Учебное пособие.- 5-е изд. — СПб.: Кинетика, 2018.– 159 с.
С уважением, А.В.Самсонова
Агонисты и антагонисты рецепторов — SportWiki энциклопедия
Агонист (рис. А) имеет сродство к рецептору, видоизменяет рецепторный белок, что в свою очередь влияет на функции клетки («внутренняя активность»). Биологическая эффективность агонистов, т. е. их влияние на функции клетки, зависит от того, насколько активация рецепторов может повлиять на передачу сигнала в клетке.
Рассмотрим два агониста А и В (рис. Б). Агонист А может вызвать максимальный эффект даже при связывании части рецепторов. Агонист В с таким же сродством, но с ограниченной способностью активировать рецептор (ограниченная внутренняя активность) и влиять на передачу сигнала может связываться со всеми рецепторами, но вызывает лишь ограниченный эффект, т. е. проявляет ограниченную эффективность. Агонист В является частичным агонистом. Потенциал агониста характеризуется концентрацией ЕС50, при которой достигается половина максимального эффекта.
Антагонисты (А) ослабляют действие агонистов: они влияют «антагонистически». Полные антагонисты имеют сродство к рецепторам, однако их связь не приводит к изменению клеточной функции (отсутствие внутренней активности). При одновременном применении агониста и полного антагониста результат их конкурентного действия определяется сродством и концентрацией каждого из этих веществ. Так, при повышении концентрации агониста, несмотря на противодействие антагониста, может быть достигнут полный эффект (рис. В): т. е. в присутствии антагониста кривая концентрация агониста — эффект смещается вправо по абсциссе к более высоким значениям концентрации. Модель молекулярного механизма действия агонистов/антагонистов (А)
Агонист вызывает переход в активную конформацию. Агонист присоединяется к неактивному рецептору и способствует его переходу в активную конформацию. Антагонист присоединяется к неактивному рецептору, при этом не меняя его конформацию.
Агонист стабилизирует спонтанно возникающую активную конформацию. Рецептор может спонтанно перейти в активную форму. Однако статистическая вероятность такого события очень мала. Агонист селективно присоединяется к рецепторам, находящимся в активной конформации, и поддерживает это состояние рецептора. Антагонист обладает сродством к «неактивным» рецепторам и поддерживает их конформацию. Если спонтанная активность рецептора практически отсутствует, то введение антагониста не приводит к значимому эффекту. Если система имеет высокую спонтанную активность, антагонист оказывает действие, противоположное действию агониста: обратный агонист. «Истинный» антагонист без внутренней активности имеет одинаковое сродство как к активному, так и к неактивному рецептору и не влияет на исходную активность клетки. Частичный агонист не только селективно присоединяется к активному рецептору, но может частично связываться с неактивной формой. Другие формы антагонистического действия
Аллостерический антагонизм. Антагонист присоединяется к рецептору вне зоны присоединения агониста и снижает сродство агониста к этому рецептору. При аллостерическом синергизме сродство агониста усиливается.
Функциональный антагонизм. Два агониста посредством разных рецепторов влияют на один и тот же параметр (например, просвет бронхов) в противоположных направлениях (адреналин вызывает расширение, гистамин — сужение).
Агонист — это… Что такое Агонист?
Не следует путать с протагонистом — главным героем литературного произведения.Агонист — это химическое соединение (лиганд), которое при взаимодействии с рецептором изменяет его состояние, приводя к биологическому отклику. Обычные агонисты увеличивают отклик рецептора, обратные агонисты уменьшают его, а антагонисты блокируют действие агонистов.[1]
Характеристики агонистов
Агонисты могут быть эндогенными (например, гормоны и нейротрансмиттеры) и экзогенными (лекарства). Эндогенные агонисты в норме производятся внутри организма и опосредуют функцию рецептора. К примеру, дофамин является эндогенным агонистом дофаминовых рецепторов.
Физиологическим агонистом называется вещество, вызывающее аналогичный отклик, но действующее на иной рецептор.
Спектр эффектов
Спектр эффектов агонистовАгонисты различаются по силе и направлению физиологического ответа, вызываемого ими. Данная классификация не связана с аффинностью лигандов и опирается лишь на величину отклика рецептора.
Суперагонист — соединение, способное вызывать более сильный физиологический ответ, чем эндогенный агонист. Полный агонист — соединение, вызывающее такой же отклик, как эндогенный агонист (например, изопреналин, агонист β-адренорецепторов). В случае меньшего отклика соединение называют частичным агонистом (например, арипипразол — частичный агонист дофаминовых и серотониновых рецепторов).
В случае, если у рецептора имеется базальная (конститутивная) активность, некоторые вещества — обратные агонисты — могут уменьшать её. В частности, обратные агонисты рецепторов ГАМКA обладают анксиогенным или спазмогенным действием, однако могут усиливать когнитивные способности[2][3].
Механизм
Если для активации рецептора требуется взаимодействие с несколькими различными молекулами, последние называются коагонистами. В качестве примера можно привести NMDA-рецепторы, активирующиеся при одновременном связывании глутамата и глицина.
Необратимым агонист называют в случае, если после связывания с ним рецептор становится постоянно активированным. В данном случае не имеет значения, образует ли лиганд ковалентную связь с рецептором либо взаимодействие является нековалентным, но чрезвычайно термодинамически выгодным.
Селективность
Селективным агонист называют в том случае, если он активирует лишь один конкретный рецептор либо подтип рецепторов. Степень селективности может различаться: дофамин активирует рецепторы пяти различных подтипов, но не активирует серотониновые рецепторы. В настоящее время встречаются экспериментальные подтверждения возможности различного взаимодействия одних и тех же лигандов с одними и теми же рецепторами: в зависимости от условий одно и то же вещество может быть полным агонистом, антагонистом или обратным агонистом.
Активность
Активность агониста (англ. potency) обратно пропорциональна EC50, концентрации агониста, вызывающей полумаксимальный отклик рецептора. Чем ниже EC50, тем более активен агонист; сравнение активности лигандов осуществляют с помощью этой величины. Поскольку разные вещества вызывают один и тот же физиологический эффект в различных концентрациях, наибольший интерес при разработке лекарств представляют те из них, которые вызывают отклик в меньших концентрациях.
Примечания
- ↑ Neubig RR, Spedding M, Kenakin T, Christopoulos A. International Union of Pharmacology Committee on Receptor Nomenclature and Drug Classification. XXXVIII. Update on Terms and Symbols in Quantitative Pharmacology (англ.) // Pharmacol Rev : журнал. — 2003. — Т. 55. — № 4. — С. 597-606. — DOI:10.1124/pr.55.4.4
- ↑ Wang F, Xu Z, Yuen CT, Chow CY, Lui YL, Tsang SY, Xue H. 6,2′-Dihydroxyflavone, a subtype-selective partial inverse agonist of GABAA receptor benzodiazepine site (англ.) // Neuropharmacology : журнал. — Elsevier, 2007. — Т. 53. — № 4. — С. 574-582. — DOI:10.1016/j.neuropharm.2007.06.018 — PMID 17681556.
- ↑ Atack JR. GABAA receptor subtype-selective modulators. II. α5-selective inverse agonists for cognition enhancement (англ.) // Curr Top Med Chem : журнал. — Bentham Science, 2011. — Т. 11. — № 9. — С. 1203-1214. — PMID 21050171.
Частичный агонист — Википедия
Материал из Википедии — свободной энциклопедии



В фармакологии термин частичные агонисты (также употребителен термин «парциальные агонисты», partial agonist) применяется по отношению к лекарствам и химическим соединениям, которые являются лигандами для конкретного подтипа клеточных рецепторов (то есть связываются с ними) и способны активировать рецептор, то есть переводить его в активную пространственную конфигурацию (проявлять агонистические свойства), но с меньшей вероятностью (меньшей рецепторной эффективностью), чем эндогенный агонист тех же рецепторов, рецепторная эффективность которого принимается за 100 % и который рассматривается, таким образом, как истинный полный агонист. Другими словами, внутренняя агонистическая активность частичного агониста (синоним его «рецепторной эффективности») по определению всегда больше 0 % (иначе он был бы «нейтральным антагонистом»), но меньше 100 % (иначе он был бы «полным агонистом»).
На практике внутренняя агонистическая активность веществ, обычно рассматриваемых в качестве «частичных агонистов», как правило, выше 10-20 %, но ниже 70-80 %, поскольку «слабые» частичные агонисты (с внутренней агонистической активностью, меньшей 10-20 %) и в эксперименте, и в клинической практике обычно трудно отличимы от «истинных» нейтральных антагонистов (имеющих строго нулевую внутреннюю агонистическую активность), а «сильные» частичные агонисты (с внутренней агонистической активностью, большей 70-90 %) трудно отличимы от «истинных» полных агонистов (имеющих внутреннюю агонистическую активность, строго равную 100 %). Более того, существует, на самом деле, очень мало «истинных» нейтральных антагонистов (со строго равной нулю внутренней агонистической активностью) — большинство из них являются либо слабыми и очень слабыми частичными агонистами, либо обратными агонистами. Точно так же существует очень мало «истинных» полных агонистов (кроме эндогенного агониста, который по определению принимается за 100 %) — большинство из них являются просто сильными или очень сильными частичными агонистами. Более того, даже если в эксперименте для некоего соединения получено значение внутренней агонистической активности, строго равное 0 % или 100 %, то это вовсе не значит, что это соединение действительно является «истинным нейтральным антагонистом» или «истинным полным агонистом» — это всего лишь значит, что разница между измеренным значением и 0 % или 100 % меньше погрешности метода измерения. Таким образом, с формально-математической точки зрения, частичные агонисты являются наиболее распространённым типом экзогенных лигандов, причём в зависимости от величины внутренней агонистической активности они могут клинически рассматриваться и применяться либо в качестве квази-«антагонистов» (слабые частичные агонисты с внутренней агонистической активностью менее 10-20 % от активности эндогенного лиганда), либо в качестве квази-«полных агонистов» (сильные частичные агонисты с внутренней агонистической активностью выше 70-90 % от активности эндогенного лиганда), либо в качестве «частичных агонистов» (при промежуточных значениях внутренней агонистической активности).
Частичные агонисты также могут рассматриваться как лиганды, которые проявляют как агонистические, так и антагонистические свойства в зависимости от конкретной клинической или экспериментальной ситуации, или, иначе говоря, как «смешанные агонисты-антагонисты». А именно, когда в биологической системе присутствуют одновременно частичный агонист и полный агонист (например, эндогенный агонист) или просто более сильный частичный агонист одних и тех же рецепторов, то «более слабый» частичный агонист, на самом деле, проявляет свойства конкурентного антагониста этих рецепторов, конкурируя с «более сильным» частичным агонистом или с полным агонистом (в том числе эндогенным лигандом) за занятость рецепторов и вызывая, таким образом, общее снижение уровня активности рецепторной системы по сравнению с присутствием одного лишь только полного агониста или «более сильного» частичного агониста в той же концентрации.[1] Клиническая польза и эффективность частичных агонистов определяются тем, что они могут одновременно и активировать рецепторные системы при недостаточном уровне их стимуляции (низком уровне эндогенного полного агониста) до некоего желаемого «субмаксимального» уровня (который ниже, чем при применении полного агониста), и предотвращать чрезмерную, избыточную и вредную гиперстимуляцию рецепторов, наступающую при чрезмерно высоком уровне эндогенного агониста.[2] Способность частичных агонистов действовать как конкурентные антагонисты в присутствии полного агониста (в том числе эндогенного лиганда) или в присутствии «более сильного» частичного агониста весьма важна для клинической практики. Так, например, способность налоксона (являющегося на самом деле не истинным антагонистом, а весьма и весьма слабым частичным агонистом опиоидных рецепторов — настолько слабым, что его частичная агонистическая активность никакого клинического значения не имеет и его традиционно относят к опиоидным антагонистам) снимать проявления опиоидной интоксикации основана именно на этом свойстве. Не менее важна для клинической практики способность сильных частичных агонистов (с рецепторной эффективностью 80-90 % и выше) действовать практически неотличимо от «истинных» полных агонистов. Так, например, прессорное вещество фенилэфрин (мезатон), являющееся структурным аналогом норадреналина, является на самом деле весьма сильным, «почти полным» частичным агонистом α-адренорецепторов, а не «истинным» полным агонистом. Но это отличие настолько мало, что оно не имеет клинического значения и позволяет применять фенилэфрин в качестве «почти полного агониста», прессорного вещества для купирования гипотензии, вместо короткодействующего и неудобного для применения норадреналина. Аналогичным образом сальбутамол является сильным, «почти полным» частичным агонистом β-адренорецепторов, настолько сильным, что клинически его действие на бронхи неотличимо от действия адреналина, что и позволяет его применять в качестве бронходилататора.
Другие важные примеры лекарств, являющихся частичными агонистами тех или иных рецепторов (причём в истинном, «сбалансированном» смысле — не в смысле подобия вышеприведённым крайним примерам с налоксоном и с фенилэфрином и сальбутамолом), включают в себя небензодиазепиновый анксиолитик буспирон, атипичный антипсихотик арипипразол, частичный агонист опиоидных рецепторов наркотический анальгетик бупренорфин, метаболит клозапина норклозапин. Имеются также примеры лигандов, активирующих рецептор PPARγ именно как частичные агонисты — хонокиол и фалкариндиол.[3][4]
- ↑ Calvey, Norman; Williams, Norton. Partial agonists // Principles and Practice of Pharmacology for Anaesthetists (англ.). — 2009. — P. 62. — ISBN 978-1-4051-9484-6.
- ↑ Zhu, Bao Ting. Mechanistic explanation for the unique pharmacologic properties of receptor partial agonists (англ.) // Biomedicine & Pharmacotherapy (англ.)русск. : journal. — 2005. — Vol. 59, no. 3. — P. 76—89. — doi:10.1016/j.biopha.2005.01.010. — PMID 15795100.
- ↑ Atanasov, Atanas G.; Wang, Jian N.; Gu, Shi P.; Bu, Jing; Kramer, Matthias P.; Baumgartner, Lisa; Fakhrudin, Nanang; Ladurner, Angela; Malainer, Clemens; Vuorinen, Anna; Noha, Stefan M.; Schwaiger, Stefan; Rollinger, Judith M.; Schuster, Daniela; Stuppner, Hermann; Dirsch, Verena M.; Heiss, Elke H. Honokiol: A non-adipogenic PPARγ agonist from nature (англ.) // Biochimica et Biophysica Acta (англ.)русск. : journal. — 2013. — Vol. 1830, no. 10. — P. 4813—4819. — doi:10.1016/j.bbagen.2013.06.021. — PMID 23811337.
- ↑ Atanasov, Atanas G.; Blunder, Martina; Fakhrudin, Nanang; Liu, Xin; Noha, Stefan M.; Malainer, Clemens; Kramer, Matthias P.; Cocic, Amina; Kunert, Olaf; Schinkovitz, Andreas; Heiss, Elke H.; Schuster, Daniela; Dirsch, Verena M.; Bauer, Rudolf. Polyacetylenes from Notopterygium incisum–New Selective Partial Agonists of Peroxisome Proliferator-Activated Receptor-Gamma (англ.) // PLoS ONE[убрать шаблон] : journal. — 2013. — Vol. 8, no. 4. — P. e61755. — doi:10.1371/journal.pone.0061755. — Bibcode: 2013PLoSO…861755A. — PMID 23630612.
Анатомия йоги: агонисты и антагонисты
Типичное противоборство мышц-агонистов и мышц-антагонистов заключается в том, что, находясь по разные стороны сустава, первые сокращаются, а вторые растягиваются, образуя биомеханическую пару инь и ян. Мышца-агонист сокращается и двигает сустав в определённом направлении, тогда как мышца-антагонист растягивается и противодействует этому движению.
Например, когда нога в колене выпрямляется, агонистом является четырёхглавая мышца, которая сокращается, тогда как задняя группа мышц бедра играет роль антагониста. Когда же нога сгибается в колене, задняя группа мышц бедра берёт на себя роль агониста, а четырёхглавая мышца становится антагонистом.
Таким образом, движение сустава в ответ на сокращение мышцы является биомеханическим феноменом, который сочетается с физиологическим феноменом — взаимным торможением. Когда мозг даёт мышце-агонисту сигнал сократиться, мышца-антагонист одновременно получает приказ расслабиться. Это физиологическое проявление инь и ян. Понимание взаимоотношений между агонистами и антагонистами является ключом к правильному выполнению асан. Поэтому очень важно разобраться в мышцах и их функциях.
Рисунок 1. При выполнении Уттхита-триконасаны сокращение четырёхглавой мышцы выпрямляет ногу в колене и бедренная кость образует одну линию с большеберцовой. Это поддерживает сустав в надлежащем состоянии и позволяет избежать травм. Кроме того, активизация четырёхглавой мышцы передней ноги (которая здесь играет роль агониста) сигнализирует задней группе мышц бедра (здесь: антагонисту) о необходимости расслабиться. Расслабление мышцы-антагониста позволяет углубить позу. Это пример взаимного торможения. Попробуйте сами и почувствуйте, как изменяется ощущение этой растяжки, когда вы сильно напрягаете четырёхглавую мышцу передней ноги.
Рисунок 2. В Уттанасане прямая мышца живота сгибает туловище и сигнализирует мышцам-антагонистам, мышце, выпрямляющей позвоночник, и квадратной мышце поясницы о необходимости расслабиться. Мобилизуйте эту мышцу при выполнении асан с наклоном вперёд, чтобы усилить растяжение спинных мышц-антагонистов.
Рисунок 3. В Уттхита-паршваконасане подвздошно-поясничная мышца является агонистом, сгибающим тазобедренный сустав и наклоняющим таз вперёд (антеверсия). Когда подвздошно-поясничная мышца сокращается, мозг приказывает мышце-антагонисту, большой ягодичной мышце (основная функция которой заключается в разгибании тазобедренного сустава), расслабиться в растяжке.
Фото: gabriella.dondero/instagram.com