Жиры в клетке функции: Основная функция жиров в клетке

Содержание

Жиры, их строение и роль в клетке.

Жиры, их строение и роль в клетке.

Жиры вместе с другими жироподобными веществами |и носят к группе липидов (греч. lipos — жир). По химиче­ской структуре жиры представляют собой сложные соединения трехатомного спирта глицерина и высокомолекулярных жирных кислот. Они неполярны, практически нерастворимы в воде, но хорошо растворяются в неполяр­ных жидкостях, таких как бензин, эфир, ацетон. Содержа­ние в клетках жира обычно невелико — 5—10% от сухого вещества. Однако в клетках некоторых тканей животных (подкожной клетчатке, сальниках) их содержание может достигать до 90%.

Функции жиров:

1. Энергетическая функция. При окислении жиров об­разуется большое количество энергии, которая расходуется на процессы жизнедеятельности. При окислении 1 г жира освобождается 38,9 кДж энергии.

2. Структурная функция. Липиды принимают участие в построении мембран клеток всех органов и тканей.

3.

Запасная функция. Жиры могут накапливаться в клетках и служить запасным питательным веществом. Жиры накапливаются в семенах растений (подсолнечник, горчица), откладываются под кожей у животных.

4. Функция терморегуляции. Жиры плохо проводят тепло. У некоторых животных, откладываясь под кожей (у китов, ластоногих), толстый слой подкожного жира защищает их от переохлаждения.

5.  Жиры могут служить источником эндогенной воды При окислении 100 г жира выделяется 107 мл воды. Благо даря этому многие пустынные животные могут длительное время обходиться без воды (верблюды, тушканчики).

Жиры, их строение и роль в клетке.

5 (100%) 2 votes
На этой странице искали :
  • роль жиров в клетке
  • функции жиров в клетке
  • жиры в клетке
  • строение жиров
  • Функция жиров в клетке

Сохрани к себе на стену!

Органические вещества

Органические вещества

Углеводы

Углеводы — органические вещества, с общей формулой Cn(h3O)m.

В животной клетке углеводы находятся в количествах не превышающих 5% . Наиболее богаты углеводами растительные клетки, где их содержание достигает до 90% сухой массы(картофель, семена и т.д.)
Углеводы делят на простые (моносахариды и дисахариды) и сложные (полисахариды).

Моносахариды — такие вещества, как глюкоза, пентоза, фруктоза, рибоза. дисахариды — сахар, сахароза (состоит из глюкозы и фруктозы.

 

Полисахариды — образованны многими моносахаридами. Мономерами таких полисахаридов, как крахмал, гликоген, целлюлоза является глюкоза.

Функции углеводов

Углеводы выполняют две основные функции:

энергетическую и строительную. Например целлюлоза образует стенки растительных клеток (клетчатка), хитин — главный структкрный компонент наружного скелета членистоногих.
Углеводы играют роль основного источника энергии в клетке. в процессе окисления 1 г углеводов освободждается 17,6 кДж. Крахмал у растений и гликоген у животных, откладывается в клетках, служат энергетическим резервом.

Жиры .

Жиры (липиды) представляют собой соединения высокомолекулярных жирных кислот и трёх-атомного спирта глицерина.

Жиры не растворяются в воде, они гидрофобны (греч. hydor — вода и phobos - страх).

Содержание жира в клетке колеблется в пределах 5 — 15% от массы сухого вещества. В клетках жировой ткани количество жира достигает 90%.

Функции жиров

Накапливаясь в клетках жировых тканей животных, в семенах и плодах рестений, жир служит запасным источником энергии.

Важна роль жиров и как растворителей гидрофобных органических соединений, необходимых для нормального протекания биохимических превращений в организме.

Жиры также выполняют и строительную функцию: Они входят в состав мембран, таким образом они во — первых не пропускают воду в клетки, а также служат теплоизолятором, т.к жиры имеют очень плохую теплопроводимость.

И также как и углеводы жиры выполняют энергетическую функцию: из расщепления 1г жира освобождается 38,9 кДж энергии.


 


липиды — урок. Биология, Общие биологические закономерности (9–11 класс).

Липиды — обширная группа жироподобных веществ (сложных эфиров жирных кислот и трёхатомного спирта глицерина), нерастворимых в воде. К липидам относят жиры, воски, фосфолипиды и стероиды (липиды, не содержащие жирных кислот).

Липиды состоят из атомов водорода, кислорода и углерода.

Липиды присутствуют во всех без исключения клетках, но их содержание в разных клетках сильно варьирует (от \(2\)–\(3\) до \(50\)–\(90\) %).

Липиды могут образовывать сложные соединения с веществами других классов, например с белками (липопротеины) и с углеводами (гликолипиды).

Функции липидов:

  • запасающая — жиры являются основной формой запасания липидов в клетке.
  • Энергетическая — половина энергии, потребляемой клетками позвоночных животных в состоянии покоя, образуется в результате окисления жиров (при окислении они дают более чем в два раза больше энергии по сравнению с углеводами).
  • Жиры используются и как источник воды (при окислении \(1\) г жира образуется более \(1\) г воды).
  • Защитная — подкожный жировой слой защищает организм от механических повреждений.
  • Структурная — фосфолипиды входят в состав клеточных мембран.
  • Теплоизоляционная — подкожный жир помогает сохранить тепло.
  • Электроизоляционная — миелин, выделяемый клетками Шванна (образуют оболочки нервных волокон), изолирует некоторые нейроны, что во много раз ускоряет передачу нервных импульсов.
  • Гормональная (регуляторная) — гормон надпочечников (кортизон) и половые гормоны (прогестерон и тестостерон) являются стероидами.
  • Смазывающая — воски покрывают кожу, шерсть, перья и предохраняют их от воды. Восковым налётом покрыты листья многих растений, воск используется при строительстве пчелиных сот.

особенности, клетки, за что отвечает жир в организме

Особенности жировой ткани

Что мы знаем о жире? Ну, наверное, то, что он коварно старается покрыть все тело, особенно так называемые «проблемные зоны», что борьба с ним изнуряющая и часто безнадежна. Что стоит ценой неимоверных усилий сбросить лишние килограммы, как они тут же норовят вернуться, да еще в большем количестве.

Почему же усилия часто остаются бесплодными? Чтобы ответить на этот вопрос, необходимо разобраться, как же устроена жировая ткань, какую роль в организме она выполняет и так ли уж необходимо стараться ее уничтожить. Знание законов образования и развития жировой ткани необходимо каждому, кто всерьёз занимается проблемами коррекции веса и фигуры.

Существует принципиальная разница между лечением ожирения как заболевания, наносящего существенный вред здоровью, которое проводят врачи-специалисты, и исправлением недостатков внешности. Если женщине не нравится её фигура, поскольку «тут слишком висит, а здесь выпирает», то никакой врач не сочтет это заболеванием. С точки зрения медицины пациент здоров. Но разве кто-нибудь подсчитывал, сколько страданий причиняют женщинам неэстетичные бугры, отвисшие комки жира и прочие «украшения». В таком случае врач-косметолог – это единственный специалист, который может помочь. Он сможет подобрать индивидуальную программу, которая устранит как косметические недостатки, так и поможет оздоровить ткани — мышцы, жировую клетчатку, кожу.

Для чего нужен жир организму?

Жир поступает в организм с пищей. А также в жир могут быть превращены углеводы, и белки, если они поступают в количестве, превышающем в данный момент потребности организма. То есть практически любая пища(!) может стать жиром, если не расходовать в полной мере поступающую энергию.

У рядовых потребителей в связи с усиленной рекламой сложилось мнение, что жир — это вообще плохо, всегда и везде: в молоке, йогуртах и особенно в жировых складках.

На самом деле это не совсем так, и в организме жир выполняет множество ничем не заменимых функций. Некоторые шутливо называют свои отложения «стратегическими запасами».

Если чрезмерно увлекаться едой, отложившийся жир превращается из «запасов на чёрный день» в «место захоронения отходов». И при появлении целлюлита добиться расщепления жиров простыми методами – ограничениями в еде, возросшей физической нагрузкой — практически невозможно. Отложение жиров в принципе происходит намного легче, чем расщепление, даже при целлюлите.

За что отвечают жиры в организме?

Жир расходуется на следующие цели:

  • производство гормонов;
  • формирование нервной ткани;
  • создание оболочек клеток;
  • построение кожи и других органов;
  • участие в биохимических реакциях — например, усвоение жирорастворимых витаминов А, Е, К и D.

Из вышесказанного с очевидностью следует, что к проблеме избыточного веса у женщин после 40 лет следует подходить с максимальной осторожностью.

Жировая ткань способна синтезировать женские половые гормоны (так называемый экстрагонадный синтез). Такая особенность есть только у приматов — людей и обезьян. Дополнительный источник гормонов может смягчить протекание климакса, уменьшить вымывание кальция из костей, снизить риск онкологических заболеваний.

Королькова Т.Н., Полийчук Т.П. кафедра медицинской косметологии Санкт-Петербургской медицинской академии постдипломного образования. Сборник статей Научно-практического общества врачей-косметологов Санкт-Петербурга, выпуск 3.
«Жировая ткань — элемент половой системы организма. Для мужчин всех возрастов, а также девочек перед пубертатом (половым созреванием — Б.Н.) и пожилых женщин — это важнейший источник женских половых гормонов».

Природа многие миллионы лет шлифовала механизмы адаптации, и мода на стройность не должна затмевать здравый смысл и вредить здоровью.

Какие бывают типы жира?

У всех млекопитающих жировая ткань представлена двумя типами: белой и бурой. Для нас с вами прежде всего представляет интерес белая жировая ткань.

Функции белой жировой ткани

  1. Теплоизоляция.
  2. Механическая защита (смягчение ударов).
  3. Накопление энергии в виде жира.
    Как основной источник энергии организм использует углеводы, но не может создать существенного их запаса. Когда организмом израсходованы все углеводы, поступившие вместе с пищей, он начинает расщеплять гликоген, который находится в мышцах и печени. Таким образом, получает необходимую глюкозу – источник энергии. Но при повышенном потреблении запасы гликогена быстро кончаются. Тогда организм начинает расходовать жиры, расщепляя их на глюкозу.
  4. Продуцирование целого спектра веществ-регуляторов. В частности, жировая ткань способна синтезировать эстроген — женские половые гормоны. Особенно важна эта функция жировой ткани в период менопаузы.
  5. В жировой ткани задерживаются некоторые токсичные вещества (пестициды и другие яды, содержащиеся в пище и воде).

Есть мнение, что целлюлит – это способ обезопасить внутренние органы от конечных и не очень полезных продуктов обмена. Таким образом, когда при лечении целлюлита мы выводим отходы из жировой ткани, то не только улучшаем фигуру, но и существенно оздоравливаем внутреннюю среду организма.

Бурая жировая ткань локализуется между лопатками, около почек и щитовидной железы. Бурой жировой ткани много у ребёнка, находящегося в утробе матери. После рождения её количество существенно уменьшается. Основная функция бурой жировой ткани — поддержание температуры тела, хотя в настоящее время её функции исследованы не полностью.

Из каких клеток состоит жировая ткань?

Жировая ткань состоит из жировых клеток – адипоцитов, располагающихся группами в рыхлой соединительной ткани. («Адипо»( лат.) и «липо» (греч.) означает жир). Адипоцит состоит из одной большой капли жира, оттесняющей ядро и остальные органы клетки к периферии.

Количество жира в белой жировой ткани может доходить до 85 %. Неприятное свойство адипоцитов – их способность быстро увеличиваться в объёме. Их диаметр может возрасти в 27-40 раз (!).

Кроме адипоцитов, жировая ткань содержит клетки — предшественники жировых — преадипоциты. Долгое время считалось, что число адипоцитов не меняется после полового созревания. И действительно, зрелый адипоцит утрачивает способность к размножению. Но, к сожалению, так называемые преадипоциты способны превращаться в адипоциты. (В данный момент эти клетки изучены недостаточно). Таким образом, в любом возрасте возможно увеличение количества жировых клеток при неправильном питании или нарушениях гормонального обмена.

Сосудов в жировой ткани не много, но каждая здоровая жировая клетка контактирует по крайней мере с одним капилляром. Таким образом, в клетку поступают различные вещества и удаляются продукты распада. При ожирении и целлюлите далеко не каждая клетка оказывается связана с капилляром, что приводит к зашлаковыванию жировой ткани продуктами обмена.

От чего зависит объём жировой ткани?

Объём жировой ткани зависит от числа и размера адипоцитов — жировых клеток. Различают гиперплазию и гипертрофию жировых клеток.

Гипертрофия — увеличение в размерах каждой жировой клетки.

Гиперплазия — увеличение количества жировых клеток за счёт активного и размножения.

Есть всего два периода в жизни человека, когда активно увеличивается количество адипоцитов.

Первый такой период – начиная с последних трёх месяцев внутриутробного развития и до 18 месяцев жизни. Если мать в этот период переедала или закармливала любимое чадо любыми способами, то создаётся предрасположенность к полноте – большое количество жировых клеток. Ведь количество адипоцитов в течение жизни практически не меняется! Все они при удобном случае будут стремиться заполнить свои вакуоли, то есть, максимально увеличиться в объеме.

Второй период увеличения количества жировых клеток приходится на подростковый период, когда человек становится по-взрослому красивым, а красота, как известно, «не более чем удачное распределение подкожного жира». Перекармливание подростков в этот период очень значимо для дальнейшего состояния жировой ткани.

При обычном (алиментарном, то есть от переедания) ожирении тоже может увеличиваться общее количество жировых клеток. Эта фаза включается только тогда, когда вес человека превышает на 100 % его нормальный вес. Такое ожирение уже не поддаётся коррекции с помощью диет и физических нагрузок и свидетельствует о серьёзных эндокринных и церебральных нарушениях.

Об особенностях жировой ткани, о целлюлите и способах его лечения – в книге Н.Баховец «Коррекция фигуры: современная аппаратная косметология».

Оцените материал:

Средний рейтинг: 4.7 / 5

Наталия Баховец

Автор статьи: кандидат медицинских наук, физиотерапевт, косметолог, аспирант кафедры физиотерапии СПбГМА им. И.М. Мечникова, автор многочисленных книг и методических пособий по аппаратной косметологии, руководитель и методолог учебного центра АЮНА.

Для чего человеку нужны жировые прослойки — Сноб

В издательстве АСТ вышла книга диетолога Маргариты Королевой «Похудеть навсегда». В ней автор рассказывает о научно обоснованной методике снижения избыточного веса. Благодаря программе положительные результаты получили более 45 тысяч человек. «Сноб» публикует главу, в которой объясняется, для чего человеку нужны жировые прослойки

Фото: Renee Fisher

Основной задачей жировой клетки является создание запаса энергии в виде жира, то есть жировая ткань является важнейшим энергетическим депо. За счет накопленных жировых отложений человек нормального веса может голодать до двух месяцев. Жировая ткань является и своеобразным хранилищем воды в организме, так как при распаде жира выделяется вода. В жировой ткани происходят процессы обмена жирных кислот, углеводов и образования жира из углеводов. Но и это еще не все, для чего нам нужен жир. Помимо сбережения энергетических запасов жировая ткань служит для теплоизоляции, с ее участием вырабатываются важные биологические вещества и гормоны, в частности женские половые гормоны, лептин — гормон, чувствительность к работе которого сказывается на активности метаболических процессов в организме. Жировая прослойка механически защищает внутренние органы и так далее.

Таким образом, жир выполняет различные функции, и он совершенно необходим для нормальной деятельности организма.

Что же представляет собой наша жировая ткань? Жировая ткань — это скопления жировых клеток, которые могут образовываться в различных органах. Жировые отложения у человека расположены подкожно и вокруг внутренних органов, то есть висцерально, а также под соединительнотканными оболочками, покрывающими мышцы.

Вся жировая ткань делится на отдельные дольки различной формы и размеров прослойками рыхлой волокнистой ткани. Кровеносные и лимфатические сосуды проходят в этих прослойках и охватывают петлями группы жировых клеток. Каждая жировая клетка находится в тесном контакте по крайней мере с одним капилляром, благодаря чему в клетку легко поступают различные вещества и удаляются из нее продукты распада. В случаях ожирения размеры жировых клеток значительно увеличиваются, что приводит к нарушению контакта их с капиллярами и нарушению обмена веществ в этих клетках. Это ведет к зашлакованности всей жировой ткани продуктами обмена. В этом случае отложившийся жир превращается из «запасов на черный день» в место «захоронения отходов». Таким образом, при ожирении жировые клетки увеличиваются в размере, то есть развивается их гипертрофия за счет отложения в них жировых включений и продуктов обмена.

Размеры и количество жировых клеток индивидуальны для каждого человека, но при определенных условиях может происходить и увеличение адипоцитов.

При значительном накоплении жировых отложений образуется некая их «критическая масса», которая является своеобразным пусковым фактором (триггером) для образования новых жировых клеток. Кстати, сигналом к образованию новых жировых клеток может быть и удаление большого количества жировой ткани при липосакции. При этом «компенсаторные » жировые отложения могут образовываться совсем в других местах, сводя на нет результаты оперативного вмешательства. Кроме того, необходимо помнить, что деление жировых клеток с увеличением их количества особенно выражено в последний месяц внутриутробного развития плода, на первом году жизни ребенка и в период полового созревания. Именно в эти периоды особенно тщательно необходимо контролировать питание будущей матери и ребенка.

Жировую ткань разделяют на три слоя.

Первый слой находится непосредственно под кожей. Именно этот слой жира формирует очертания и пропорции фигуры. Данный жировой слой покрывает всю поверхность тела, но значительно отличается по толщине и плотности на различных участках. Именно здесь происходит формирование так ненавистного всеми женщинами целлюлита. Толщина этого слоя определяется толщиной жировой складки. Чтобы определить толщину поверхностного слоя жира, достаточно захватить двумя пальцами в положении стоя слой жира на любом участке тела. Особенно наглядно это можно проделать на животе. Расстояние между пальцами и будет характеризовать толщину поверхностного слоя жира. Если у вас толщина складки большая, не беспокойтесь — именно от этого жира избавиться проще всего.

Второй слой расположен глубже — под мышечной тканью. Это уже «стратегические» жировые запасы организма, и расстается он с ними очень неохотно.

Третий слой расположен внутри брюшной полости (внутренний или висцеральный жир). Наличие его внешне проявляется в виде больших, упругих, выпуклых животов. Иногда толщина кожной складки может составлять всего 2–3 сантиметра, а объем талии может быть очень большим. Это говорит о преобладании в организме висцерального жира, а это уже не просто некрасиво, но и опасно для здоровья.

Капли жира (триглицериды), находящиеся внутри клетки, синтезируются самой клеткой из хиломикронов (капелек пищевого жира), которые поступают из кишечника. Этот процесс получил название липогенеза. Процесс расщепления жира с высвобождением жирных кислот носит название липолиз. Жировые клетки метаболически чрезвычайно активны. Биохимические процессы, происходящие в них, представляют собой многоступенчатые превращения, в которых принимают участие множество ферментов и гормональных систем. На скорость липолиза оказывают влияние энергетические потребности организма, нервные и гуморальные воздействия, а также скорость кровотока в жировой ткани, которая значительно замедляется при застойных явлениях.

На поверхности адипоцитов расположены специальные молекулярные структуры, носящие название рецепторов. Биологически активные вещества, циркулирующие в крови, соединяются с ними и запускают биохимические процессы в клетках. За накопление жира в адипоцитах (липогенез) несут ответственность альфа-2-рецепторы, а за выделение (липолиз) — бета-рецепторы. Необходимо заметить, что в жировой ткани человека, и особенно у женщин, значительно преобладают альфа-2-рецепторы, что способствует накоплению жира в организме. Установлено, что накоплению жира в адипоцитах способствуют также инсулин, салицилаты и никотиновая кислота (витамин РР). Липолиз стимулируют адреналин, норадреналин и гормоны, сходные с ними по действию, а также гормоны щитовидной железы и кофеин. В связи с этим человек заметно снижает массу тела при стрессовых ситуациях, а также при гипертиреозе (базедовой болезни).

Согласно последним исследованиям, жировая ткань человека представлена не только белым, но и бурым жиром. Раньше его находили только у животных. Особенно хорошо он развит у зверей, впадающих в зимнюю спячку с целью поддержания, как оказалось, температуры их тела в условиях адинамии и гипотермии. Бурый жир нужен и при пробуждении животных весной: активизация обменных процессов в этих участках жировой ткани повышает температуру тела, из-за чего животное просыпается.

Позже, согласно исследованиям, обнаружился бурый жир и в организме младенцев, который появляется у него за 2–3 недели до рождения.

Он помогает привыкнуть к новой среде сразу после их появления на свет, защищает от переохлаждения. У новорожденных это вещество размещается в районе почек, шеи, вдоль верхней части спины, на плечах, и составляет примерно 6% от массы тела. В организме младенцев иногда бурый жир смешан с белым. Благодаря этому компоненту новорожденные менее чувствительны к холоду, чем люди постарше.

Клетки бурых жировых отложений имеют в своем составе огромное количество митохондрий — энергетических субстанций, благодаря которым, клетки имеют свой коричневый оттенок. При снижении внешней температуры митохондрии активизируются и специфический белок в их составе UCP1 быстро трансформируют жирные кислоты в тепло. То есть когда младенцу требуется много энергии (к примеру, надо согреться), происходит эффективный липолиз, то есть сжигание жира из состава как бурых, так и белых жировых клеток с выделением тепла. Согреваясь, ребенок при этом немного худеет. Что, кстати, наблюдается в первые дни жизни младенцев.

Таким образом, бурый жир создан для того, чтобы расходовать энергию общих жировых запасов, превращая ее в тепло. Белый жир — хранитель этой энергии на случаи длительного голода и холода.

Как же самостоятельно активировать работу бурой жировой ткани с пользой для собственной стройности?

  1. Закаляйтесь: организм не станет хранить жир, если ему регулярно нужна энергия для согревания. Хотите худеть? Принимайте по утрам контрастный душ, не кутайтесь даже зимой в кучу свитеров, дышите прохладным воздухом, поддерживайте комнатную температуру в пределах 18–19 градусов, плавайте в прохладной воде.
  2. Будьте активными: регулярно занимайтесь физическими нагрузками, на выполнение которых расходуется энергия белого жира.
  3. Живите в унисон с природой: чем меньше человек находится в условиях искусственного освещения, тем активнее будет бурая жировая ткань. Поэтому днем надо бодрствовать, а ночью — спать. Иначе шансы на снижение лишнего веса уменьшаются почти в пять раз.
  4. Питайтесь часто и понемногу. Откажитесь от избытка простых углеводов.  Регулярное превышение уровня инсулина в крови снижает активность бурого жира. Соблюдая уже эти простые правила, можно быстро и легко начать сбрасывать лишний вес.

Самое важное о жировой ткани и ожирении | Здоровье

Подступаясь к теме висцерального жира, вместе с врачом спортивной медицины и лечебной физкультуры, реабилитологом в клубе World Class RedSide Кристиной Амелёхиной разбираемся в особенностях жировой ткани, а также причинах и видах ожирения.

Человек относится к тем немногим млекопитающим, которые рождаются с жировой тканью. В норме она развивается (это значит, что количество жировых клеток, адипоцитов, активно увеличивается) в два периода:

  • первый, эмбриональный, относится к 30-й неделе внутриутробного развития: малыш уже рождается «пухленьким»;
  • второй — это период полового созревания.

Если ситуация критическая, то есть на протяжении длительного времени количество поступающей энергии больше, чем расход, развивается ожирение. В таком случае существующие жировые клетки не только увеличиваются в объемах, но и стимулируется развитие новых жировых клеток из их «спящих» предшественников. Проблема в том, что если процесс запустился и у человека начинают размножаться жировые клетки, то от них избавиться он уже не может. Даже если человек похудеет, они уменьшатся в объемах, но их количество по-прежнему останется большим.

Жировая ткань бывает белой и бурой. Первая в основном располагается под кожей и называется подкожной жировой клетчаткой; вторая в организме тоже присутствует и метаболически активна, но более выражена у новорожденных детей и располагается на шее, около лопаток, за грудиной, однако регрессирует с возрастом.

Общая масса подкожно-жировой клетчатки может достигать десятков килограмм. У женщин она составляет до 25% от общего веса, у мужчин — 15%. На определенных частях тела ее толщина может быть разной. Интересный факт: меньше всего подкожно-жировой клетчатки находится на веках.

Функции жировой ткани

  • Энергетическая. Как известно, самое большое количество энергии, около 9 ккал на 1 г жира, поступает из жиров. Этого хватит, чтобы в быстром темпе пробежать несколько десятков метров.
  • Изоляция тепла. Подкожно-жировая клетчатка пронизана коллагеновыми волокнами, которые образуют обширную сеть и хорошо изолируют внешние воздействия на организм.
  • Защитная. Жир, расположенный под кожей и окружающий внутренние органы, оберегает их от ударов, сотрясений, воздействия температур и т. д., то есть любых механических и физических факторов. Подкожный жир также способствует хорошей подвижности; благодаря ему кожа такая эластичная.
  • Накопительная. Жировая ткань накапливает триглицериды (жиры, которые являются основным источником энергии для организма), свободные жирные кислоты, жирорастворимые витамины А, D и Е, а также женские половые гормоны эстрогены. Вот почему избыток жира у мужчин приводит к снижению уровня тестостерона: когда количество жировых клеток увеличивается, организм продуцирует больше эстрогенов, вместе с тем собственный уровень тестостерона подавляется. Мужчины с большим уровнем эстрогенов становятся более «женственными».
  • Гормонопродуцирующая. Жировая ткань не только накапливает эстрогены, но и продуцирует их. Так, у девушек с низким процентом подкожного жира могут начаться проблемы с менструацией, например, аменорея. Пока процент жира не увеличится, ситуацию наладить трудно.

На жировых клетках, адипоцитах, есть два вида рецепторов, которые в организме человека играют важную роль, — это альфа-2-рецепторы, накапливающие жир, и бета-рецепторы, отвечающие за выделение свободных жирных кислот и триглицеридов в кровоток. В «проблемных» зонах у женщин — это живот, бедра, колени — находится большое количество альфа-2-рецепторов, поэтому жир отсюда так долго уходит.

Висцеральный жир и типы ожирения

У среднестатистического здорового человека висцеральный жир есть всегда. «Висцеро» означает органный — это тот жир, что окружает внутренние органы, в первую очередь, почки, которые не имеют связок, то есть, грубо говоря, «висят» в организме. Висцеральный жир — это «подушка» для почек, которая их поддерживает (если этой жировой «подушки» нет, у человека с низким ИМТ может наблюдаться опущение почек). Такими же жировыми «подушками», которые защищают наш кишечник, являются большой и малый сальник. Небольшое количество жировой ткани также окружает сердце.

Уровень висцерального жира можно определить с помощью биоимпедансного анализа (например, на аппарате InBody). В норме его значение составляет от одного до девяти. Для того чтобы понять, почему он увеличивается, сперва нужно разобраться с типами ожирения.

  • Алиментарное, или алиментарно-конституционное. Это самый распространенный вид ожирения, связанный с повышением аппетита, перееданием, употреблением алкоголя, неправильным образом жизни. Причина в основном психологическая: стресс. Такой тип ожирения чаще всего наблюдается у женщин старше 40 лет.
  • Гипоталамическое. Если в гиполатамусе — главном регуляторе гомеостаза нашего организма, где находятся центры голода, дыхания и др., происходят какие-либо нарушения, у человека появляется бесконтрольный повышенный аппетит, который ничем нельзя унять.
  • Эндокринное. Этот также распространенный тип ожирения связан с нарушением функций эндокринных желез: поджелудочной, щитовидной, гипофиза, половых желез. Здесь продуцируются гормоны, которые способны изменить обмен веществ и повысить аппетит.
  • Медикаментозное. Оно провоцируется препаратами, которые повышают массу тела: это глюкокортиостероиды, некоторые антидепрессанты, нейролептики, контрацептивы.

Ожирение бывает верхним, андроидным, когда жир скапливается в верхней части туловища. Таким страдают в основном мужчины. Второе — нижнее, или гиноидное, зачастую наблюдается у женщин. Третье, смешанное, объединяет признаки первых двух.

Как врач определяет ожирение? Есть такое понятие, как индекс массы тела, или ИМТ, который высчитывается из показателей роста и веса человека. Однако, есть множество факторов, не дающих объективно оценить ситуацию с ожирением по ИМТ — например, мышечная масса может быть повышена, потому что у человека атлетическое телосложение (если по формуле высчитать ИМТ бодибилдера невысокого роста, по классификации у него может быть третий тип ожирения), и так далее. Так, можно этот показатель учитывать, но куда важнее делать биоимпеданс, чтобы понимать, за счет чего именно ИМТ повышен.

Более объективным сегодня считается индекс отношения объема талии к объему бедер, который у женщин не должен превышать 0.85, а у мужчин — 1. Если значение этого показателя у человека выходит за пределы нормы, задача врача — выяснить, за счет чего именно. Это важно, так как андроидное, или ожирение по верхнему типу, опасно увеличением объема висцерального жира, который провоцирует заболевания сердечно-сосудистой и эндокринной систем, опорно-двигательного аппарата и пр.

Основные закономерности метаболических процессов в организме человека. Часть 2.

Рассматривая обмен веществ в условиях нормального функционирования организма, следует остановиться на безусловно взаимосвязанных, но в то же время достаточно специфичных составляющих метаболизма, а именно на углеводном, белковом, липидном и водно-электролитном обмене.

Очевидно, что основная роль углеводов в метаболизме определяется их энергетической функцией. Именно глюкоза крови вследствие наличия простого и быстрого пути гликолитической диссимиляции и последующего окисления в цикле трикарбоновых кислот, а также возможности максимально быстрого извлечения ее из депо гликогена, обеспечивающей экстренную мобилизацию энергетических ресурсов, является наиболее востребованным источником энергии в организме. Использование циркулирующей в плазме глюкозы разными органами неодинаково: мозг задерживает 12% глюкозы, кишечник— 9%, мышцы — 7%, почки — 5%. При этом уровень глюкозы плазмы крови является одной из важнейших гомеостатических констант организма, составляя 3, 3—5, 5 ммоль/л. Как известно снижение уровня глюкозы ниже допустимого передела имеет своим незамедлительным следствием дискоординацию деятельности ЦНС, проявляющуюся соответствующей клинической симптоматикой: головной мозг содержит небольшие резервы углеводов и нуждается в постоянном поступлении глюкозы, поскольку энергетические расходы мозга покрываются исключительно за счет углеводов. Глюкоза в тканях мозга преимущественно окисляется, а небольшая часть ее превращается в молочную кислоту.

Единственной формой углеводов, которая может всасываться в кишечнике, являются моносахара. Они всасываются главным образом в тонкой кишке, током крови переносятся в печень и к тканям. Основная часть поступающей с пищей глюкозы (около 70%) окисляется в тканях до воды и углекислого газа, около 25—28% пищевой глюкозы превращается в жир и только 2—5% ее синтезируется в гликоген. Гликоген печени представляет собой основной резерв углеводов в организме, достигая по своей массе у взрослого человека 150—200 г. Синтез гликогена происходит достаточно быстро, что, наряду с быстрой мобилизацией гликогена и поступлением глюкозы в кровь в процессе гликогенолиза, является одним из механизмов поддержания гликемии в константных пределах. Помимо печени в качестве депо гликогена выступают также мышцы. Однако запас гликогена в мышечной массе по отношению к всему гликогену организма составляет всего 1 — 2%. В мышцах под влиянием фермента фосфорилазы, которая активируется в начале мышечного сокращения, происходит усиленное расщепление гликогена, являющегося одним из источников энергии мышечного сокращения. При распаде мышечного гликогена процесс идет до образования пировиноградной и молочной кислот. Этот процесс называют гликолизом. В фазе отдыха из молочной кислоты в мышечной ткани происходит ресинтез гликогена.

При полном отсутствии углеводов в пище они образуются в организме из продуктов трансформации жиров и белков. В печени возможно новообразование углеводов как из собственных продуктов их распада (пировиноградной или молочной кислоты), так и из продуктов диссимиляции жиров и белков (кетокислот и аминокислот), что обозначается как глюконеогенез. В результате трансформации аминокислот образуется пировиноградная кислота, при окислении жирных кислот — ацетилкоэнзим А, который может превращаться в пировиноградную кислоту — предшественник глюкозы. Это наиболее важный общий путь биосинтеза углеводов. Между двумя основными источниками энергии — углеводами и жирами — существует тесная физиологическая взаимосвязь. Повышение содержания глюкозы в крови увеличивает биосинтез триглицеридов и уменьшает распад жиров в жировой ткани. Поступление в кровь свободных жирных кислот уменьшается. В случае возникновения гипогликемии процесс синтеза триглицеридов тормозится, ускоряется распад жиров и в кровь в большом количестве поступают свободные жирные кислоты. Гликогенез, гликогенолиз и глюконеогенез являются тесно взаимосвязанными процессами, обеспечивающими оптимальный уровень глюкозы крови сообразно степени функционального напряжения организма.

Центральным звеном регуляции углеводного и других видов обмена и местом формирования сигналов, управляющих уровнем глюкозы, является гипоталамус. Отсюда регулирующие влияния реализуются вегетативными нервами и гуморальным путем, включающим эндокринные железы. Единственным гормоном, снижающим уровень гликемии, является инсулин — гормон, вырабатываемый β-клетками островков Ланхгерганса. Снижение гликемии происходит за счет усиления инсулином синтеза гликогена в печени и мышцах и повышения потребления глюкозы тканями организма. Увеличение уровня глюкозы в крови возникает при действии нескольких гормонов. Это глюкагон, продуцируемый α-клетками островков Ланхгерганса, адреналин — гормон мозгового слоя надпочечников, глюкокортикоиды — гормоны коркового слоя надпочечников, соматотропный гормон гипофиза, тироксин и трийодтиронин — гормоны щитовидной железы. Данные гормоны в связи с однонаправленностью их влияния на углеводный обмен и функциональным антагонизмом по отношению к эффектам инсулина часто объединяют понятием «контринсулярные гормоны».

Таким образом биологическая роль углеводов для организма человека определяется прежде всего их энергетической функцией. Обладая энергетической ценностью в 16, 7 кДж (4, 0 ккал) на 1 грамм вещества, углеводы являются основным источником энергии для всех клеток организма, при этом выполняя еще пластическую и опорную функции. Суточная потребность взрослого человека в углеводах составляет около 500 г.

Характерной особенностью белкового обмена является его чрезвычайная разветвленность. Достаточно указать, что в обмене 20 аминокислот, входящих в состав белковых молекул, в организме животных участвуют сотни промежуточных метаболитов, тесно связанных с обменом углеводов и липидов. Число ферментов, катализирующих химические реакции азотистого обмена, также исчисляется сотнями. Собственно белки (протеины и протеиды), высокомолекулярные соединения, построенные из мономеров — аминокислот, занимают ведущее место среди органических элементов организма, составляя более 50 % сухой массы клетки. Как известно, белки в организме выполняют ряд важнейших биологических функций, а именно:

— пластическая (структурная) функция заключается в том, что белки являются главной составной частью всех клеточных и межклеточных структур тканей;

— ферментная (каталитическая, энзимная) функция состоит в обеспечении всех химических реакций, протекающих в ходе обмена веществ в организме (дыхание, пищеварение, выделение), деятельностью ферментов, являющихся по своей структуре белками;

— транспортная функция белков заключается в их способности к соединению с целым рядом метаболитов и переносе последних в связанном состоянии в межтканевой жидкости и плазме крови к области их утилизации;

— защитная функция белков проявляется реализацией иммунного ответа образованием иммуноглобулинов (антител) и системы комплемента при поступлении в организм чужеродного белка, а также способностью к непосредственному связыванию экзогенных токсинов; белки системы гемостаза обеспечивают свертывание крови и остановку кровотечения при повреждении кровеносных сосудов;

регуляторная функция, направленная на сохранение гомеостаза с поддержанием биологических констатнт организма, реализуется буферными свойствами молекулы протеинов, белковой структурой клеточных рецепторов, активируемых в свою очередь регуляторными полипептидами и гормонами, также имеющими белковую структуру;

— двигательная функция, обеспечивается взаимодействием сократительных белков мышечной ткани актина и миозина;

энергетическая роль белков состоит в обеспечении организма энергией, образующейся при диссимиляции белковых молекул; при окислении 1 г белка в среднем освобождается энергия, равная 16, 7 кДж (4, 0 ккал).

В организме постоянно происходит распад и синтез белков. Единственным источником синтеза нового белка являются белки пищи. В пищеварительном тракте белки ферментативно расщепляются ферментами до аминокислот и абсорбируются в тонкой кишке. Транспорт их осуществляется двумя путями: через воротную систему печени, ведущую прямо в печень, и по лимфатическим сосудам, сообщающимся с кровью через грудной лимфатический проток. Максимальная концентрация аминокислот в крови достигается через 30 — 50 мин после приёма белковой пищи (углеводы и жиры замедляют всасывание аминокислот). Всасывание L-аминокислот (но не D-изомеров) — активный процесс, требующий затраты энергии. Аминокислоты переносятся через кишечную стенку от слизистой её поверхности в кровь. Перенос через щеточную кайму осуществляется целым рядом переносчиков, многие из которых действуют при участии Na+-зависимых механизмов симпорта, подобно переносу глюкозы.

Из аминокислот и простейших пептидов клетки тканей синтезируют собственный белок, который характерен только для данного организма. Белки не могут быть заменены другими пищевыми веществами, так как их синтез в организме возможен только из аминокислот. Вместе с тем белок может замещать собой жиры и углеводы, то есть использоваться для синтеза этих соединений. В тканях постоянно протекают процессы распада белка с последующим выделением из организма неиспользованных продуктов белкового обмена и параллельно с этим — синтез белков. Катаболизм большинства аминокислот начинается с отщепления α-аминогруппы результате реакций трансаминирования и дезаминирования. Чаще всего в реакциях трансаминирования участвуют аминокислоты, содержание которых в тканях значительно выше остальных — глутамат, аланин, аспартат и соответствующие им кетокислоты — αкетоглутарат, пируват и оксалоацетат. Основным донором аминогруппы служит глутамат. Реакции трансаминирования играют большую роль в обмене аминокислот. Поскольку этот процесс обратим, ферменты аминотрансферазы функционируют как в процессах катаболизма, так и биосинтеза аминокислот. Трансаминирование — заключительный этап синтеза заменимых аминокислот из соответствующих α-кетокислот, если они в данный момент необходимы клеткам. В результате происходит перераспределение аминного азота в тканях организма. Трансаминирование — первая стадия дезаминирования большинства аминокислот, то есть начальный этап их катаболизма. Образующиеся при этом кетокислоты окисляются в ЦТК или используются для синтеза глюкозы и кетоновых тел. При трансаминировании общее количество аминокислот в клетке не меняется. В свою очередь дезаминирование аминокислотреакция отщепления α-аминогруппы от аминокислоты, в результате чего образуется соответствующая α-кетокислота (безазотистый остаток) и выделяется молекула аммиака. Аммиак токсичен для ЦНС, поэтому в организме человека и млекопитающих он превращается в нетоксичное хорошо растворимое соединение — мочевину. В виде мочевины, а также в виде солей аммония аммиак выводится из организма. Безазотистый остаток используется для образования аминокислот в реакциях трансаминирования.

При катаболизме почти все природные аминокислоты сначала передают аминогруппу на а-кетоглутарат в реакции трансаминирования с образованием глутамата и соответствующей кетокислоты. Затем глутамат подвергается прямому окислительному дезаминированию под действием глутаматдегидрогеназы, в результате чего получаются а-кетоглутарат и аммиак. При необходимости синтеза аминокислот и наличии необходимых а-кетокислот обе стадии непрямого дезаминирования протекают в обратном направлении. В результате восстановительного аминирования а-кетоглутарата образуется глутамат, который вступает в трансаминирование с соответствующей а-кетокислотой, что приводит к синтезу новой аминокислоты. В случае использования белков в качестве источника энергии большинство аминокислот окисляются в конечном счёте через цикл лимонной кислоты до углекислого газа и воды. Прежде, чем эти вещества вовлекаются в заключительный этап катаболизма, их углеродный скелет превращается в двухуглеродный фрагмент в форме ацетил-КоА. Именно в этой форме большая часть молекул аминокислот включается в цикл лимонной кислоты.

Белки организма находятся в динамическом состоянии: из-за непрерывного процесса их разрушения и образования происходит обновление белков, скорость которого неодинакова для различных тканей. С наибольшей скоростью обновляются белки печени, слизистой оболочки кишечника, а также других внутренних органов и плазмы крови. Медленнее обновляются белки, входящие в состав клеток мозга, сердца, половых желез и еще медленнее — белки мышц, кожи и особенно опорных тканей (сухожилий, костей и хрящей). Важнейшими азотистыми продуктами распада белков, которые выделяются с мочой и потом, являются мочевина, мочевая кислота и аммиак. Преобладание в организме в данный момент времени синтеза или распада белка отражается понятием азотистого баланса — разностью между количеством азота, содержащегося в пище человека, и его уровнем в выделениях. Азотистым равновесием называют состояние, при котором количество выведенного азота равно количеству поступившего в организм. Азотистое равновесие наблюдается у здорового взрослого человека, если минимальное количество белков в пище соответствует 30-50 г/сут. Оптимальное количество поступления белка с пищей при средней физической нагрузке составляет около 100-120 г/сут. При положительном азотистом балансе количество азота в выделениях организма значительно меньше, чем содержание его в пище, то есть наблюдается задержка азота в организме. Положительный азотистый баланс отмечается у детей в связи с усиленным ростом, у женщин во время беременности, при усиленной спортивной тренировке, приводящей к увеличению мышечной массы, при заживлении обширных ран и при разрешении патологического процесса, связанного с выраженными системными нарушениями. Отрицательный азотистый баланс отмечается тогда, когда количество выделяющегося азота больше содержания его в пище, поступающей в организм. Отрицательный азотистый баланс наблюдается при белковом голодании, лихорадочных состояниях, нарушениях нейроэндокринной регуляции белкового обмена.

Некоторые аминокислоты не могут синтезироваться в организме человека и должны обязательно поступать с пищей в готовом виде. Эти аминокислоты принято называть незаменимыми, или эссенциальными. Экспериментально установлено, что из 20 входящих в состав белков аминокислот 12 синтезируются в организме (заменимые аминокислоты), а 8 не синтезируются (незаменимые аминокислоты) . К незаменимым аминоксилотам относятся: валин, метионин, треонин, лейцин, изолейцин, фенилаланин, триптофан и лизин. Две аминокислоты — аргинин и гистидин — у взрослых образуются в достаточных количествах, однако детям для нормального роста организма необходимо дополнительное поступление этих аминокислот с пищей. Поэтому их называют частично заменимыми. Две другие аминокислоты — тирозин и цистеин — условно заменимые, так как для их синтеза необходимы незаменимые аминокислоты. Тирозин синтезируется из фенилаланина, а для образования цистеина необходим атом серы метионина. Белки, содержащие весь необходимый набор аминокислот, называют биологически полноценными (табл. 1. 1. ). Наиболее высока биологическая ценность белков молока, яиц, рыбы, мяса. Биологически неполноценными называют белки, в составе которых отсутствует хотя бы одна аминокислота, которая не может быть синтезирована в организме. Неполноценными белками являются белки кукурузы, пшеницы, ячменя.

Таблица 1. 1. Аминокислоты, входящие в состав белков человека.

1. Незаменимые

Валин

Лейцин

Изолейцин

Треонин

Метионин

Фенилаланин

Триптофан

Лизин

2. Частично заменимые

Гистидин

Аргинин

3. Условно заменимые

Цистеин

Тирозин

4. Заменимые

Аланин

Аспарагиновая кислота

Аспарагин

Глутаминовая кислота

Глутамин

Пролин

Глицин

Серин

Жиры (липиды) по своей химической структуре представляют собой триглицериды — сложные эфиры глицерина и жирных кислот (табл. 1. 2). Изначально эти соединения были объединены в одну химическую группу по общему признаку растворимости: они не растворяются в воде, но растворяются в органических растворителях (эфир, спирт, бензол). Жиры делят на простые липиды (нейтральные жиры, воски), сложные липиды (фосфолипиды, гликолипиды, сульфолипиды) и стероиды (холестерин). Основная масса липидов представлена в организме человека нейтральными жирами — триглицеридами олеиновой, пальмитиновой, стеариновой, линолевой и линоленовой жирных кислот.

Таблица 1. 2. Классификация липидов организма человека.

1. Гликолипиды.

Содержат углеводный компонент.

2. Жиры.

Эфиры глицерина и высших жирных кислот. Химическое название — ацилглицерины. Преобладают триацилглицерины.

3. Минорные липиды.

Свободные жирные кислоты, жирорастворимые витамины, биологически активные вещества липидной природы — простагландины и др.

4. Стероиды.

В основе строения — полициклическая структура циклопентанпергидрофенантрен-стеран.

А. Стерины (спирты).

Наиболее важен холестерин.

В. Стериды.

Эфиры стеринов и высших жирных кислот. Наиболее распространены эфиры холестерина.

5. Фосфолипипы.

Отличительная особенность — остаток фосфорной кислоты в составе молекулы.

Жиры растительного и животного происхождения имеют различный состав жирных кислот, определяющий их физические свойства и физиолого-биохимические эффекты. Жирные кислоты подразделяются на два основных класса — насыщенные и ненасыщенные. Насыщенность жира определяется количеством атомов водорода, которое содержит каждая жирная кислота (или, иначе, количеством двойных связей С=С). Жирные кислоты со средней длиной цепи (С8-С14) способны усваиваться в пищеварительном тракте без участия желчных кислот и панкреатической липазы, не депонируются в печени и подвергаются β-окислению. Животные жиры могут содержать насыщенные жирные кислоты с длиной цепи до двадцати и более атомов углерода, они имеют твердую консистенцию и высокую температуру плавления. Как известно высокое потребление насыщенных жирных кислот является важнейшим фактором риска развития диабета, ожирения, атеросклероза. К мононенасыщенным жирным кислотам относятся миристолеиновая и пальмитолеиновая кислоты (жиры рыб и морских млекопитающих), олеиновая (оливковое, сафлоровое, кунжутное, рапсовое масла). Мононенасыщенные жирные кислоты помимо их поступления с пищей в организме синтезируются из насыщенных жирных кислот и частично из углеводов. Жирные кислоты с двумя и более двойными связями между углеродными атомами называются полиненасыщенными – ПНЖК. Особое значение для организма человека имеют такие ПНЖК как линолевая, линоленовая, являющиеся структурными элементами клеточных мембран и обеспечивающие нормальное развитие и адаптацию организма человека к неблагоприятным факторам окружающей среды. ПНЖК являются предшественниками образующихся из них биорегуляторов – эйкозаноидов. Двумя основными группами ПНЖК являются кислоты семейств ω-6 и ω-3. Жирные кислоты ω-6 содержатся практически во всех растительных маслах и орехах. ω-3 жирные кислоты также содержатся в ряде масел (льняном, из семян крестоцветных, соевом). Основным пищевым источником ω-3 жирных кислот являются жирные сорта рыб и некоторые морепродукты. Из ПНЖК ω — 6 особое место занимает линолевая кислота, которая является предшественником наиболее физиологически активной кислоты этого семейства — арахидоновой. Арахидоновая кислота является преобладающим представителем ПНЖК в организме человека и служит субстратом для синтеза простагландинов и лейкотриенов.

Источниками жира в организме являются экзогенный жир, поступающий с пищей, и эндогенный жир, синтезируемый в печени из углеводов. Жир, всасывающийся из кишечника, поступает преимущественно в лимфу и в меньшем количестве — непосредственно в кровь. Большая часть жиров в организме находится в жировой ткани, меньшая часть входит в состав клеточных структур. В жировой ткани жир, находящийся в клетке в виде включений, легко выявляется при микроскопическом и гистохимическом исследованиях. Жировые вакуоли в клетках — это резервный жир, используемый для обеспечения прежде всего энергетических потребностей клетки. Больше всего запасного жира содержится в жировой ткани, а также в некоторых органах, например в печени и мышцах. Количество запасного жира зависит от характера питания, количества пищи, конституциональных особенностей, а также от величины расхода энергии при мышечной деятельности; количество же протоплазматического жира является устойчивым и постоянным. В жировой ткани нейтральный жир депонируется виде триглицеридов. Сложные липиды — фосфолипиды и гликолипиды — входят в состав всех клеток, но в большей степени в состав клеток нервной ткани. Общее количество жира в организме человека колеблется в широких пределах и в среднем составляет 10—20% от массы тела, а в случае патологического ожирения может достигать 50%. Суточная потребность взрослого человека в нейтральном жире составляет 70—80 г. У человека состав и свойства жира относительно постоянны. При употреблении пищи, содержащей даже небольшое количество жира, в теле человека жир все же откладывается в депо. При этом эндогенный жир имеет некоторые видовые особенности, однако видовая специфичность жиров выражена несравнимо меньше, чем видовая специфичность белков.

Основная биологическая роль жиров — обеспечение пластического и энергетического обмена в организме. Пластическая роль липидов состоит в том, что они входят в состав клеточных мембран, в значительной мере определяя их свойства. Фосфатиды и стерины входят в состав клеточных структур, в частности клеточных мембран, а также ядерного вещества и цитоплазмы. Исключительно важное физиологическое значение имеют стерины, в частности холестерин. Это вещество входит в состав клеточных мембран, является источником образования желчных кислот, а также гормонов коры надпочечников и половых желез, витамина D. Печень является практически единственным органом, поддерживающим уровень фосфолипидов в крови и местом синтеза эндогенного холестерина. В плазме крови холестерин находится в составе липопротеидных комплексов, с помощью которых и осуществляется его транспорт. У взрослых людей 67—70% холестерина плазмы крови находится в составе липопротеидов низкой плотности (ЛПНП), 9—10% — в составе липопротеидов очень низкой плотности (ЛПОНП) и 20—24% — в составе липопротеидов высокой плотности (ЛПВП). Давно доказано, что именно липопротеиды определяют уровень холестерина и динамику его обмена.

Энергетическая роль жиров определяется их максимальной среди всех биологических молекул энергоемкостью, более чем в два раза превышающую таковую углеводов или белков. При окислении 1 г жира выделяется 37, 7 кДж (9, 0 ккал) энергии. В отличие от углеводов жиры составляют энергетический резерв организма. Преимущество жира в качестве энергетического резерва заключается в том, что жиры являются более восстановленными веществами по сравнению с углеводами (в молекулах углеводов при каждом углеродном атоме есть кислород — группы -CHOH-; у жира имеются длинные углеводородные радикалы, в которых преобладают группы -Ch3- — в них нет кислорода). От жира можно отнять больше водорода, который затем проходит по цепи митохондриального окисления с образованием АТФ. Еще одним преимуществом жира как энергетического резерва, в отличие от углеводов, является гидрофобность — он не связан с водой. Это обеспечивает компактность жировых запасов — они хранятся в безводной форме, занимая малый объем. В среднем, у человека запас чистых триацилглицеринов составляет примерно 13 кг. Этих запасов могло бы хватить на 40 дней голодания в условиях умеренной физической нагрузки. Для сравнения: общие запасы гликогена в организме — примерно 400 г; при голодании этого количества не хватает даже на одни сутки.

Катаболизм жира включает в себя три этапа: 1) гидролиз жира до глицерина и жирных кислот (липолиз) ; 2) трансформация глицерина с последующим вступлением продуктов в гексозобифосфатный путь, а также окисление жирных кислот до ацетил-КоА; 3) вступление вышеуказанных продуктов в цикл трикарбоновых кислот. Кроме указанных этапов к катаболизму жиров относят также окисление кетоновых тел и перекисное окисление липидов. Обмен полученного в результате липолиза глицерина может осуществляться несколькими путями. Значительная часть образовавшегося при гидролизе липидов глицерина используется для ресинтеза триглицеридов. Второй путь обмена глицерина — включение продукта его окисления в гликолиз или в глюконеогенез. Окисление жирных кислот осуществляется различными путями, наиболее значимым из них является β-окисление. В ходе β-окисления последовательно происходит активация жирной кислоты на мембране митохондрии и ее связывание с молекулой карнитина, прохождение комплекса нв внутреннюю поверхность мембраны митохондрии, внутримитохондриальное окисление жирной кислоты с образованием ацетил-КоА и АТФ.

Одним из продуктов катаболизма жиров, имеющем важное значения для метаболизма в целом являются кетоновые тела. Кетоновые тела — группа органических соединений, являющихся промежуточными продуктами жирового, углеводного и белкового обменов. К кетоновым телам относят β-оксимасляную и ацетоуксусную кислоты и ацетон, имеющие сходное строение и способные к взаимопревращениям. Главным путем синтеза кетоновых тел, происходящего в основном в печени, считается реакция конденсации между двумя молекулами ацетил-КоА, образовавшегося при β-окислении жирных кислот или при окислительном декарбоксилировании пирувата (пировиноградной кислоты) в процессе обмена глюкозы и ряда аминокислот. Данный путь синтеза кетоновых тел более других зависит от характера питания и в большей степени страдает при патологических нарушениях обмена веществ. Из печени кетоновые тела поступают в кровь и с нею во все остальные органы и ткани, где они включаются в универсальный энергообразующий цикл — цикл трикарбоновых кислот, в котором окисляются до углекислоты и воды. Кетоновые тела используются также для синтеза холестерина, высших жирных кислот, фосфолипидов и заменимых аминокислот. При голодании, однообразном безуглеводистом питании и при недостаточной секреции инсулина использование ацетил-КоА в цикле трикарбоновых кислот подавляется, так как все метаболически доступные ресурсы организма превращаются в глюкозу крови. В этих условиях увеличивается синтез кетоновых тел. Следует подчеркнуть важную роль кетоновых тел в поддержании энергетического баланса. Кетоновые тела – поставщики «топлива» для мышц, почек и действуют, возможно, как часть регуляторного механизма с обратной связью, предотвращая чрезвычайную мобилизацию жирных кислот из жировых депо. Печень в этом смысле является исключением, она не использует кетоновые тела в качестве энергетического материала.

Процесс образования, отложения и мобилизации из депо жира регулируется нервной и эндокринной системами, а также тканевыми механизмами и тесно связаны с углеводным обменом. Так, повышение концентрации глюкозы в крови уменьшает распад триглицеридов и активизирует их синтез. Понижение концентрации глюкозы в крови, наоборот, тормозит синтез триглицеридов и усиливает их расщепление. Таким образом, взаимосвязь жирового и углеводного обменов направлена на обеспечение энергетических потребностей организма. При избытке углеводов в пище триглицериды депонируются в жировой ткани, при нехватке углеводов происходит расщепление триглицеридов с образованием неэтерифицнрованных жирных кислот, служащих источником энергии. В обмене жиров одна из важнейших ролей принадлежит печени. Печень — основной орган, в котором происходит образование кетоновых тел (бета-оксимасляная, ацетоуксусная кислоты, ацетон), используемых как альтернативный глюкозе источник энергии.

При обильном углеводном питании и отсутствии жиров в пище синтез жира в организме может происходить из углеводов. Источником углерода для синтеза жирных кислот служит ацетил-КоА, образующийся при распаде глюкозы в абсорбтивном периоде. В норме у человека 25—30% углеводов пищи превращается в жиры. Превращение белка в жирные кислоты происходит, вероятнее всего, также через образование углеводов. С другой стороны и нейтральные жиры в энергетическом отношении могут быть заменены углеводами. Тем не менее жиры необходимы для нормальной жизнедеятельности. Известно, что длительное исключение жиров из пищевого рациона может явиться причиной возникновения целого ряда тяжелых метаболических нарушений. Отчасти это связано с отсутствием поступления в организм жирорастворимых витаминов (A, D, E, K). Но основная причина метаболических нарушений кроется в возникновении в организме дефицита незаменимых жирных кислот. Некоторые ненасыщенные жирные кислоты (с числом двойных связей более 1), например линолевая, линоленовая и арахидоновая, в организме человека и некоторых животных не образуются из других жирных кислот и поэтому являются незаменимыми. Особенно остро реагирует организм на дефицит незаменимой линолевой кислоты СН3- (СН2) 4 — СН = СН — СН2 — СН = СН — (СН2) 7 — СООН. Возможно это связано с тем, что эта ненасыщенная жирная кислота в организме человека служит предшественником арахидоновой кислоты, которая в свою очередь необходима для синтеза универсальных биорегуляторов — простагландинов. Основными пищевыми источниками полиненасыщенных жирных кислот, в том числе линолевой, являются растительные масла.

Как указывалось выше метаболизм жиров контролируется нервной и эндокринной системами. Мобилизация жиров из депо происходит под влиянием гормонов мозгового слоя надпочечников — адреналина и норадреналина. Соматотропный гормон гипофиза также обладает жиромобилизирующим действием. Аналогично действует тироксин — гормон щитовидной железы. Тормозят мобилизацию жира глюкокортикоиды — гормоны коркового слоя надпочечника, вероятно, вследствие того, что они несколько повышают уровень глюкозы в крови. Действие инсулина связано с повышением активности внутриклеточной фосфодиэстеразы, что приводит к снижению концентрации цАМФ и угнетению липолиза. Таким образом, инсулин усиливает синтез жира и уменьшает скорость его мобилизации. Имеются данные, свидетельствующие о возможности прямых нервных влияний на обмен жиров. Симпатические влияния тормозят синтез триглицеридов и усиливают их распад. Парасимпатические влияния, напротив, способствуют отложению жира в депо.

Статья добавлена 31 мая 2016 г.

Клеточная биология накопления жира

Mol Biol Cell. 2016 Aug 15; 27 (16): 2523–2527.

Пол Коэн

a Лаборатория молекулярного метаболизма, Университет Рокфеллера, Нью-Йорк, Нью-Йорк 10065

Брюс М. Шпигельман

b Институт рака Дана-Фарбера и Департамент клеточной биологии Гарвардской медицинской школы, Бостон, MA 02115

Дэвид Г. Друбин, редактор мониторинга

Калифорнийский университет, Беркли

a Лаборатория молекулярного метаболизма, Рокфеллеровский университет, Нью-Йорк, Нью-Йорк 10065

b Институт рака Дана-Фарбер и Департамент клеточной биологии, Гарвардская медицинская школа, Бостон, Массачусетс 02115

Поступила в редакцию 2 мая 2016 г .; Пересмотрено 16 июня 2016 г .; Принят в печать 17 июня 2016 г.

Авторские права © Коэн и Шпигельман, 2016 г. Эта статья распространяется Американским обществом клеточной биологии по лицензии авторов. Через два месяца после публикации он становится общедоступным под лицензией Creative Commons License с указанием авторства и некоммерческого использования 3.0 (http://creativecommons.org/licenses/by-nc-sa/3.0).

«ASCB®», «Американское общество клеточной биологии®» и «Молекулярная биология клетки®» являются зарегистрированными товарными знаками Американского общества клеточной биологии.

Эта статья цитируется в других статьях в PMC.

Abstract

Мировая эпидемия ожирения и диабета 2 типа значительно повысила интерес к биологии и физиологии жировой ткани. Жировые (жировые) клетки специализируются на хранении энергии в форме триглицеридов, но исследования последних нескольких десятилетий показали, что жировые клетки также играют решающую роль в восприятии изменений в системном энергетическом балансе и реагировании на них. Белые жировые клетки секретируют важные гормоноподобные молекулы, такие как лептин, адипонектин и адипсин, чтобы влиять на такие процессы, как прием пищи, чувствительность к инсулину и секреция инсулина.С другой стороны, бурый жир рассеивает химическую энергию в виде тепла, тем самым защищая от переохлаждения, ожирения и диабета. В настоящее время принято во внимание, что существует два различных типа термогенных жировых клеток, называемых коричневыми и бежевыми адипоцитами. В дополнение к этим отличительным свойствам жировых клеток, адипоциты существуют в жировой ткани, где они находятся в динамическом взаимодействии с иммунными клетками и находятся под сильным влиянием иннервации и кровоснабжения. Этот обзор призван служить введением в биологию жировых клеток и познакомить читателя с тем, как эти типы клеток играют роль в метаболических заболеваниях и, возможно, в качестве целей для терапевтических разработок.

ВВЕДЕНИЕ

Глобальная эпидемия ожирения и связанных с ним заболеваний, таких как диабет 2 типа, вызвала взрыв интереса к жировым клеткам. Жировые клетки играют несколько критических ролей в системном метаболизме и физиологии. Есть как минимум два класса жировых клеток — белые и коричневые. Белый жир специализируется на хранении энергии в форме триглицеридов, что является особенно эффективным методом, поскольку этот класс молекул обладает высокой энергией и хранится безводно. При голодании высвобождение жирных кислот и глицерина, которые служат топливом для остального тела, происходит посредством ферментативного гидролиза, называемого липолизом.Эти важные функции жира, накопления и высвобождения жирных кислот строго контролируются ключевыми гормонами состояния питания и голодания — инсулином и катехоламинами. В дополнение к этим классическим функциям важность белой жировой ткани как центрального сигнального узла в системном метаболизме была впервые выявлена ​​путем клонирования адипсина и лептина, двух важных «адипокинов» (Cook et al. , 1987; Zhang et al. al. , 1994). Фактически, жировые клетки и жировые ткани секретируют множество молекул, играющих решающую роль в метаболизме, включая фактор некроза опухоли α (TNF-α), адипонектин, резистин и RBP4, среди прочих (Rosen and Spiegelman, 2014).Здоровое и устойчивое развитие жировой ткани абсолютно необходимо для правильного метаболического контроля. Важно отметить, что дефекты жировой дифференцировки , а не приводят к здоровым, худым животным, а вместо этого приводят к липодистрофии, серьезному заболеванию, при котором другие ткани, особенно печень, принимают на себя функцию накопления жира, с пагубными последствиями, включая инсулинорезистентность, диабет. , гепатомегалия и гипертриглицеридемия (Garg, 2011).

ВИДЫ ЖИРА

В отличие от белого жира, бурый жир предназначен для рассеивания химической энергии в виде тепла, защищая млекопитающих от переохлаждения.Это достигается за счет запуска бесполезных метаболических циклов, в первую очередь бесполезного цикла исключения протонов из митохондриального матрикса и его утечки обратно в митохондриальную матрицу через цепь переноса электронов и разобщение белка 1 (UCP1; обзор Cohen and Spiegelman, 2015). Экспрессия UCP1 строго ограничена коричневыми и бежевыми жировыми клетками. Хотя обычно считалось, что UCP1 регулируется транскрипционно, недавнее исследование показало, что UCP1 также может регулироваться посттрансляционно с помощью сульфенилирования, управляемого активными формами кислорода, ключевого остатка цистеина (Chouchani, Kazak, et al., 2016). Недавно отдельный бесполезный цикл, включающий фосфорилирование / дефосфорилирование креатина, был идентифицирован в митохондриях бежевых жировых клеток, типа коричневых адипоцитов (Kazak et al. , 2015). Важно отметить, что бурый жир во всех своих измерениях играет роль в защите животных от метаболических заболеваний, таких как ожирение, диабет 2 типа и стеатоз печени (самое раннее проявление неалкогольной жировой болезни печени [НАЖБП]). Первым доказательством в этом отношении было наблюдение, что мыши с генетически удаленными клетками UCP1 + склонны к ожирению и диабету (Lowell et al., 1993), тогда как люди с генетически повышенной функцией бурого жира заметно защищены от тех же нарушений (Cederberg et al. , 2001).

До недавнего времени термин «бурый жир» использовался для обозначения клеток UCP1 + в двух различных анатомических местах: 1) сформировавшиеся депо в межлопаточной и периренальной областях, состоящие в основном из адипоцитов UCP1 + , которые имеют множество мелких липидных капель (называемых многоточечными) и плотных митохондрий, придающих ткани характерный коричневый цвет; и 2) клетки UCP1 + , которые вкраплены во многие депо белого жира, особенно в подкожных областях грызунов и людей.Эти два типа «бурого жира» являются не только разными типами клеток (Wu et al. , 2012), но они также происходят из совершенно разных клеточных линий (Seale et al. , 2008). Образовавшиеся в процессе развития бурые жировые клетки, теперь называемые «классическими коричневыми жировыми клетками», происходят от линии, подобной скелетным мышцам, как отмечено Myf5 или Pax7 (Seale et al. , 2008; Lepper and Fan, 2010). Бежевые клетки происходят, по крайней мере частично, от линии, подобной гладкой мускулатуре сосудов, как это отмечено промотором Myh21 (Long et al., 2014; Берри и др. , 2016).

В большинстве исследований не проводилось различий между функциональными ролями этих двух типов жировых клеток UCP1 + , поскольку воздействие холода или β-адренергическая стимуляция активирует оба типа клеток. Недавно была разработана модель на мышах, в которой отсутствуют бежевые жировые клетки, но есть полностью функциональный коричневый жир (Cohen et al. , 2014). У этих мышей на диете с высоким содержанием жиров развивается легкое ожирение по сравнению с контрольной группой. Более того, это ожирение возникает исключительно из-за избытка подкожного жира, что довольно необычно.Эти животные имеют тяжелую печеночную инсулинорезистентность и стеатоз печени, что свидетельствует о том, что бежевый жир защищает печень; Неизвестно, происходит ли это за счет окисления циркулирующих липидов бежевыми клетками или за счет выработки секретируемого гормона, который защищает печень от накопления жира. Выявлено все большее количество факторов, которые приводят к увеличению («потемнение») или снижению («побеление») активности бежевого жира ().

Изображение бежевой жировой ткани, которая состоит из смеси белых и бежевых адипоцитов.Схема стимулов, которые приводят к увеличению («потемнение») или снижению («побеление») активности бежевого жира, вместе с физиологическими последствиями.

КЛЕТОЧНАЯ БИОЛОГИЯ Жировой ткани

Жировая ткань когда-то рассматривалась как пассивный репозиторий для накопления триглицеридов в адипоцитах, но теперь считается сложной тканью, содержащей множество взаимодействующих типов клеток, включая жировые клетки, иммунные клетки, эндотелий, фибробласты , нейроны и стволовые клетки. Хотя адипоциты составляют> 90% объема жировой подушечки, эти другие типы клеток (вместе называемые стромальной сосудистой фракцией) преобладают по общему количеству (Kanneganti and Dixit, 2012).В настоящее время известно, что несколько подмножеств иммунных клеток накапливаются в жировой ткани и выполняют важные функции. Это можно проследить до наблюдения, что жировая ткань продуцирует TNF-α и другие провоспалительные цитокины, уровни которых повышаются при ожирении; они опосредуют местную и системную инсулинорезистентность (Hotamisligil et al. , 1993). Эти цитокины в основном продуцируются макрофагами в жировой ткани (Weisberg et al. , 2003; Xu et al. , 2003).Гистологически макрофаги можно увидеть вокруг адипоцитов в так называемых «короноподобных структурах» (Cinti et al. , 2005)

В последние годы роль субпопуляций иммунных клеток в жировой ткани становится все более понятной. В дополнение к провоспалительным макрофагам или макрофагам M1, жир также содержит альтернативно активированные макрофаги или макрофаги M2, причем соотношение M1 / ​​M2 увеличивается при ожирении (Lumeng et al. , 2007). Эти типы клеток играют важную роль в ремоделировании тканей.Более того, макрофаги M2 могут способствовать активации бежевого жира. Воздействие холода ведет к поляризации в сторону фенотипа M2, и эти клетки M2 могут продуцировать и секретировать катехоламины, которые стимулируют бежевые жировые клетки (Nguyen et al. , 2011). Эозинофилы и врожденные лимфоидные клетки 2 типа (ILC2) в жировой ткани также играют центральную роль в биогенезе бежевого жира. Эозинофилы продуцируют интерлейкин (IL) -4 и IL-13, которые активируют макрофаги M2, а сами эозинофилы могут активироваться метеориноподобным белком, полученным из мышц (Qiu et al., 2014; Rao et al. , 2014). ILC2 стимулируют бежевый жир за счет выработки IL-33 и энкефалина (Brestoff et al. , 2015; Lee et al. , 2015). Регуляторные Т-клетки (Treg) присутствуют в висцеральной жировой ткани, но их количество уменьшается с развитием ожирения, способствуя развитию инсулинорезистентности (Feuerer et al. , 2009). Интересно, что свойства Treg висцерального жира зависят от экспрессии рецептора γ, активируемого пролифератором пероксисом (Cipolletta et al., 2012). Помимо этих типов иммунных клеток, роли также были определены для других подмножеств Т-клеток, В-клеток, нейтрофилов, тучных клеток и естественных Т-клеток-киллеров (Brestoff and Artis, 2015).

Фенотип жировой ткани также зависит от кровоснабжения и иннервации, хотя регуляция этих процессов сравнительно менее изучена. По мере увеличения жировой массы в условиях переедания может развиться локальная гипоксия, и может активироваться фактор 1α, индуцируемый гипоксией, чувствительный к кислороду транскрипционный фактор (HIF1α) (Krishnan et al., 2012). Генетические и фармакологические исследования показывают, что специфическая для жировой ткани делеция или ингибирование HIF-1α может защитить от метаболической дисфункции, связанной с ожирением (Jiang et al. , 2011; Sun et al. , 2013). Данные также показывают, что белая и коричневая жировая ткань может продуцировать фактор роста эндотелия сосудов А и другие факторы для улучшения кровоснабжения (Fredriksson et al. , 2000; Mick et al. , 2002). Жировая ткань, особенно бурый жир, также интенсивно иннервируется симпатическими волокнами, которые стимулируют липолиз в условиях голодания, введения лептина и воздействия холода (Bartness et al., 2010а, б; Zeng et al. , 2015). Напротив, парасимпатические волокна могут стимулировать накопление липидов (Kreier et al. , 2002). Коричневые и бежевые адипоциты экспрессируют высокие уровни β3-адренергического рецептора, а фармакологическая активация CL 316,243 способствует термогенезу (Himms-Hagen et al. , 1994). Факторы, регулирующие иннервацию жировых клеток, остаются областью активных исследований.

НЕЗАВЕРШЕННЫЕ ВОПРОСЫ И ПЕРСПЕКТИВЫ ЛЕЧЕБНОЙ ТЕРАПЕВТЫ

Успешное нацеливание на жировую ткань с терапевтической пользой будет зависеть от дальнейшего прояснения нескольких ключевых вопросов, на которые нет ответа.Во-первых, каков полный набор регуляторов транскрипции, которые управляют образованием и поддержанием белого, коричневого и бежевого жира? Во-вторых, каков полный спектр фенотипов каждого типа адипоцитов? Например, становится все более очевидным, что коричневый и бежевый жир не только выделяют тепло, но и могут быть важными эндокринными органами (Kajimura et al. , 2015). В-третьих, как разные типы жировых клеток передают сигналы другим типам клеток и тканям и как эти сигналы влияют на системный метаболизм и подверженность диабету, гипертонии, сердечно-сосудистым заболеваниям и раку? Наконец, можно ли изменить ключевые молекулярные регуляторы жировой ткани для создания более здоровой жировой ткани? Достижение этой цели потребует базового понимания того, как важные факторы, такие как PRDM16, регулируются физиологически (например,g. транскрипционно, трансляционно, посттрансляционно).

В конечном счете, любое обсуждение жировой ткани как мишени для лечения человека должно возвращаться к понятию жировой ткани как самого здорового места для депонирования избыточной калорийной энергии (Unger et al. , 2013). Из генетики человека мы знаем, что любое подавление жировых отложений вызовет эктопическое отложение липидов и серьезное заболевание (Savage et al. , 2003). Имея это в виду, каковы потенциальные цели, относящиеся к жировым тканям? Во-первых, что касается белого жира, мы могли бы нацеливаться на аномалии, которые связывают жировую ткань с последствиями ожирения, включая диабет, сердечно-сосудистые заболевания и жировую болезнь печени.Как упоминалось ранее, жировая ткань при ожирении демонстрирует аспекты воспаления, включая секрецию воспалительных цитокинов; нейтрализация цитокинов, таких как TNFα, улучшает инсулинорезистентность у грызунов (Hotamisligil et al. , 1994). Аналогичным образом было показано, что антагонизм воспалительных протеинкиназ I-каппа-B-киназы эпсилон (IKKε) и TANK-связывающей киназы 1 (TBK1) улучшает диабет у мышей (Reilly et al. , 2013). Задача в будущем будет заключаться в том, чтобы получить терапевтический эффект при диабете или сердечно-сосудистых заболеваниях, не вызывая токсичности, связанной с генерализованным подавлением воспаления.

Для коричневого и бежевого жира задача состоит в том, чтобы увеличить их количество и активность в организме человека безопасным и эффективным способом. То, что усиление адаптивного термогенеза за счет коричневого и бежевого жира у грызунов защищает от ожирения и диабета, полностью установлено наукой (Cederberg et al. , 2001; Seale et al. , 2011). Также очевидно, что взрослые люди имеют значительные запасы бежевого жира и, возможно, некоторого количества классического коричневого жира (Sharp et al. , 2012; Wu et al., 2012 г .; Cypess et al. , 2013; Jespersen et al. , 2013; Lidell et al. , 2013). Было показано, что воздействие холода или введение β-3-адренергического соединения увеличивает активность этих термогенных жировых отложений, что подтверждено позитронно-эмиссионной томографией фтордезоксиглюкозы (Cypess et al. , 2009, 2015; van Marken Lichtenbelt et al. др. , 2009; Виртанен и др. , 2009). Конечно, еще предстоит выяснить, можно ли активировать и / или увеличить количество термогенного жира человека, чтобы он играл сильную терапевтическую роль при диабете и ожирении.Некоторые полипептиды, такие как фактор роста фибробластов 21 (FGF21) и костный морфогенетический белок 7 (BMP7), могут делать это у грызунов (Tseng et al. , 2008; Fisher, Kleiner, et al. , 2012), но Будет ли то же самое у людей с благоприятным профилем токсичности, еще предстоит выяснить. Продолжают открываться дополнительные секретируемые белки с термогенным действием на жировые ткани (предсердные и желудочковые натрийуретические пептиды и Slit2; Bordicchia et al. , 2012; Svensson et al., 2016). Также стоит отметить, что данные о грызунах, приведенные ранее, предполагают гепатопротекторную роль бежевого жира, и поэтому такие заболевания, как НАЖБП, вполне могут быть первыми терапевтическими мишенями для агентов, повышающих функцию бежевого жира. Степень, в которой различные метаболические преимущества коричневого и бежевого жира обусловлены усиленным термогенезом как таковым или эндокринной ролью этих тканей, остается важным моментом, требующим уточнения.

Благодарности

Из-за нехватки места мы сожалеем, что не смогли сослаться на все важные вклады, внесенные в эту область.

Используемые сокращения:

9018 9019 связывающий белок 9018 TBolEF первые имена авторы.

  • Бартнесс Т.Дж., Шреста Ю.Б., Воган СН, Шварц Г.Дж., Сонг К.К. Сенсорная и симпатическая нервная система, контролирующая липолиз белой жировой ткани. Mol Cell Endocrinol. 2010a; 318: 34–43. [Бесплатная статья PMC] [PubMed] [Google Scholar]
  • Bartness TJ, Vaughan CH, Song CK. Симпатическая и сенсорная иннервация коричневой жировой ткани. Int J Obes. 2010b; 34 (Приложение 1): S36 – S42. [Бесплатная статья PMC] [PubMed] [Google Scholar]
  • Берри, округ Колумбия, Цзян Ю., Графф Дж. М.. Штаммы мышей для изучения индуцируемых холодом бежевых предшественников и образования и функции бежевых адипоцитов.Nat Commun. 2016; 7: 10184. [Бесплатная статья PMC] [PubMed] [Google Scholar]
  • Bordicchia M, Liu D, Amri EZ, Ailhaud G, Dessi-Fulgheri P, Zhang C, Takahashi N, Sarzani R, Collins S. Сердечные натрийуретические пептиды действуют через p38 MAPK вызвать термогенную программу бурого жира в адипоцитах мыши и человека. J Clin Invest. 2012; 122: 1022–1036. [Бесплатная статья PMC] [PubMed] [Google Scholar]
  • Brestoff JR, Kim BS, Saenz SA, Stine RR, Monticelli LA, Sonnenberg GF, Thome JJ, Farber DL, Lutfy K, Seale P, Artis D.Врожденные лимфоидные клетки 2-й группы способствуют образованию белой жировой ткани и ограничивают ожирение. Природа. 2015; 519: 242–246. [Бесплатная статья PMC] [PubMed] [Google Scholar]
  • Brestoff JR, Artis D. Иммунная регуляция метаболического гомеостаза при здоровье и болезни. Клетка. 2015; 161: 146–160. [Бесплатная статья PMC] [PubMed] [Google Scholar]
  • Cederberg A, Gronning LM, Ahren B, Tasken K, Carlsson P, Enerback S. FOXC2 — это ген крылатой спирали, который противодействует ожирению, гипертриглицеридемии и резистентности к инсулину, вызванной диетой .Клетка. 2001. 106: 563–573. [PubMed] [Google Scholar]
  • Chouchani E, Kazak L, Jedrychowski MP, Lu GZ, Erickson BK, Szpyt J, Pierce KA, Laznik-Bogoslavski D, Vetrivelan R, Clish CB, et al. Митохондриальные АФК регулируют расход термогенной энергии и сульфенилирование UCP1. Природа. 2016; 532: 112–116. [Бесплатная статья PMC] [PubMed] [Google Scholar]
  • Cinti S, Mitchell G, Barbatelli G, Murano I, Ceresi E, Faloia E, Wang S, Fortier M, Greenberg AS, Obin MS. Гибель адипоцитов определяет локализацию и функцию макрофагов в жировой ткани мышей и людей с ожирением.J Lipid Res. 2005. 46: 2347–2355. [PubMed] [Google Scholar]
  • Cipolletta D, Feuerer M, Li A, Kamei N, Lee J, Shoelson SE, Benoist C, Mathis D. PPAR-γ является основным фактором накопления и фенотипа Treg-клеток жировой ткани . Природа. 2012; 486: 549–553. [Бесплатная статья PMC] [PubMed] [Google Scholar]
  • Cohen P, Levy JD, Zhang Y, Frontini A, Kolodin DP, Svensson KJ, Lo JC, Zeng X, Ye L, Khandekar MJ, et al. Удаление PRDM16 и бежевого жира вызывает метаболическую дисфункцию и переключение подкожного жира на висцеральный.Клетка. 2014; 158: 41–53. [Бесплатная статья PMC] [PubMed] [Google Scholar]
  • Коэн П., Шпигельман Б.М. Коричневый и бежевый жир: молекулярные составляющие термогенной машины. Сахарный диабет. 2015; 64: 2346–2351. [Бесплатная статья PMC] [PubMed] [Google Scholar]
  • Cook KS, Min HY, Johnson D, Chaplinsky RJ, Flier JS, Hunt CR, Spiegleman BM. Адипсин: циркулирующий гомолог сериновой протеазы, секретируемый жировой тканью и седалищным нервом. Наука. 1987. 237: 402–405. [PubMed] [Google Scholar]
  • Сайпесс А.М., Леман С., Уильямс Дж., Тал И., Родман Д., Голдфайн А.Б., Куо ФК, Палмер Е.Л., Ценг Й.Х., Дориа А. и др.Идентификация и важность коричневой жировой ткани у взрослых людей. N Engl J Med. 2009; 260: 1509–1517. [Бесплатная статья PMC] [PubMed] [Google Scholar]
  • Cypess AM, White AP, Vernochet C, Schulz TJ, Xue R, Sass CA, Huang TL, Roberts-Toler C, Weiner LS, Sze C. и др. Анатомическая локализация, профили экспрессии генов и функциональная характеристика бурого жира на шее взрослого человека. Nat Med. 2013; 19: 635–639. [Бесплатная статья PMC] [PubMed] [Google Scholar]
  • Cypess AM, Weiner LS, Roberts-Toler C, Franquet Elia E, Kessler SH, Kahn PA, English J, Chatman K, Trauger SA, Doria A, et al.Активация коричневой жировой ткани человека агонистом β3-адренорецепторов. Cell Metab. 2015; 21: 33–38. [Бесплатная статья PMC] [PubMed] [Google Scholar]
  • Feuerer M, Herrero L, Cipolletta D, Naaz A., Wong J, Nayer A, Lee J, Goldfine AB, Benoist C., Shoelson S, et al. Худой, но не страдающий ожирением, жир обогащается уникальной популяцией регуляторных Т-клеток, которые влияют на параметры метаболизма. Nat Med. 2009; 15: 930–939. [Бесплатная статья PMC] [PubMed] [Google Scholar]
  • Fisher FM, Kleiner S, Douris N, Fox EC, Mepani RJ, Verdeguer F, Wu J, Kharitonenkov A, Flier JS, Maratos-Flier E, et al.FGF21 регулирует PGC-1α и потемнение белых жировых тканей в адаптивном термогенезе. Genes Dev. 2012; 26: 271–281. [Бесплатная статья PMC] [PubMed] [Google Scholar]
  • Fredriksson JM, Lindquist JM, Bronikov GE, Nedergaard J. Норэпинефрин индуцирует экспрессию гена фактора роста эндотелия сосудов в коричневых адипоцитах через путь бета-адренорецептор / цАМФ / протеинкиназа A с участием Src, но независимо от Erk1 / 2. J Biol Chem. 2000; 275: 13802–13811. [PubMed] [Google Scholar]
  • Гарг А.Липодистрофии: генетические и приобретенные нарушения жировой прослойки. J Clin Endocrinol Metab. 2011; 96: 3313–3325. [Бесплатная статья PMC] [PubMed] [Google Scholar]
  • Himms-Hagen J, Cui J, Danforth E, Taatjes DJ, Lang SS, Waters BL, Claus TH. Влияние CL-316,243, термогенного бета-3-агониста, на энергетический баланс и коричневую и белую жировую ткань у крыс. Am J Physiol. 1994; 266: R1371 – R1382. [PubMed] [Google Scholar]
  • Hotamisligil GS, Budavari A, Murray D, Spiegelman BM. Снижение тирозинкиназной активности рецептора инсулина при ожирении-диабете.Центральная роль некроза опухоли-альфа. J Clin Invest. 1994; 94: 1543–1549. [Бесплатная статья PMC] [PubMed] [Google Scholar]
  • Hotamisligil GS, Shargill NS, Spiegelman BM. Экспрессия фактора некроза опухоли альфа в жировой ткани: прямая роль в инсулинорезистентности, связанной с ожирением. Наука. 1993; 259: 87–91. [PubMed] [Google Scholar]
  • Джесперсен Н.З., Ларсен Т.Дж., Пейс Л., Даугаард С., Хомо П., Лофт А, де Йонг Дж., Матур Н., Кэннон Б., Недергаард Дж. И др. Классическая сигнатура мРНК коричневой жировой ткани частично перекрывается с brite в надключичной области взрослых людей.Cell Metab. 2013; 17: 798–805. [PubMed] [Google Scholar]
  • Цзян С., Цюй А., Мацубара Т., Чантурия Т., Джоу В., Гаврилова О., Шах Ю.М., Гонсалес Ф.Дж. Нарушение индуцируемого гипоксией фактора 1 в адипоцитах улучшает чувствительность к инсулину и снижает ожирение у мышей, получавших диету с высоким содержанием жиров. Сахарный диабет. 2011; 60: 2484–2495. [Бесплатная статья PMC] [PubMed] [Google Scholar]
  • Каджимура С., Шпигельман Б.М., Сил П. Браун и бежевый жир: физиологические роли помимо тепловыделения. Cell Metab. 2015; 22: 546–559.[Бесплатная статья PMC] [PubMed] [Google Scholar]
  • Каннеганти Т.Д., Диксит В.Д. Иммунологические осложнения ожирения. Nat Immunol. 2012; 13: 707–712. [PubMed] [Google Scholar]
  • Казак Л., Чучани Е.Т., Едриховски М.П., ​​Эриксон Б.К., Шинода К., Коэн П., Ветривелан Р., Лу Г.З., Лазник-Богославски Д., Хазенфус С.К. и др. Субстратный цикл, управляемый креатином, увеличивает расход энергии и термогенез бежевого жира. Клетка. 2015; 163: 643–655. [Бесплатная статья PMC] [PubMed] [Google Scholar]
  • Kreier F, Fliers E, Voshol PJ, Van Eden CG, Havekes LM, Kalsbeek A, Van Heijningen CL, Sluiter AA, Mettenleiter TC, Romijn JA, et al.Селективная парасимпатическая иннервация подкожного и внутрибрюшного жира — функциональные последствия. J Clin Invest. 2002; 110: 1243–1250. [Бесплатная статья PMC] [PubMed] [Google Scholar]
  • Кришнан Дж., Данцер С., Симка Т., Укропек Дж., Вальтер К.М., Кампф С., Мирчинк П., Укропцова Б., Гасперикова Д., Педраззини Т. и др. Связанная с диетическим ожирением активация Hif1α в адипоцитах ограничивает окисление жирных кислот и расход энергии за счет подавления системы Sir2-NAD + . Genes Dev.2012; 26: 259–270. [Бесплатная статья PMC] [PubMed] [Google Scholar]
  • Lee MW, Odegaard JI, Mukundan L, Qiu Y, Molofsky AB, Nussbaum JC, Yun K, Locksley RM, Chawla A. Активированные врожденные лимфоидные клетки 2 типа регулируют бежевый жир биогенез. Клетка. 2015; 160: 74–87. [Бесплатная статья PMC] [PubMed] [Google Scholar]
  • Lepper C, Fan CM. Индуцибельное отслеживание клонов клеток-потомков Pax7 выявляет эмбриональное происхождение взрослых сателлитных клеток. Бытие. 2010. 48: 424–436. [Бесплатная статья PMC] [PubMed] [Google Scholar]
  • Лиделл М.Э., Бец М.Дж., Дальквист Лейнхард О., Хеглинд М., Эландер Л., Славик М., Муссак Т., Нильссон Д., Рому Т., Нуутила П. и др.Доказательства двух типов коричневой жировой ткани у людей. Nat Med. 2013; 19: 631–634. [PubMed] [Google Scholar]
  • Long JZ, Svensson KJ, Tsai L, Zeng X, Roh HC, Kong X, Rao RR, Lou J, Lokurkar I., Baur W., et al. Бежевые адипоциты имеют гладкомышечное происхождение. Cell Metab. 2014; 19: 810–820. [Бесплатная статья PMC] [PubMed] [Google Scholar]
  • Lowell BB, S-Susulic V, Hamann A, Lawitts JA, Himms-Hagen J, Boyer BB, Kozak LP, Flier JS. Развитие ожирения у трансгенных мышей после генетической абляции бурой жировой ткани.Природа. 1993; 366: 740–742. [PubMed] [Google Scholar]
  • Lumeng CN, Bodzin JL, Saltiel AR. Ожирение вызывает фенотипический переключатель поляризации макрофагов жировой ткани. J Clin Invest. 2007. 117: 175–184. [Бесплатная статья PMC] [PubMed] [Google Scholar]
  • Mick GJ, Wang X, McCormick K. Фактор роста эндотелия сосудов белых адипоцитов: регуляция инсулином. Эндокринология. 2002; 143: 948–953. [PubMed] [Google Scholar]
  • Nguyen KD, Qiu Y, Cui X, Goh YP, Mwangi J, David T., Mukundan L, Brombacher F, Locksley RM, Chawla A.Альтернативно активированные макрофаги продуцируют катехоламины для поддержания адаптивного термогенеза. Природа. 2011; 480: 104–108. [Бесплатная статья PMC] [PubMed] [Google Scholar]
  • Qiu Y, Nguyen KD, Odegaard JI, Cui X, Tian X, Locksley RM, Palmiter RD, Chawla A. Эозинофилы и передача сигналов цитокинов 2-го типа в макрофагах контролируют развитие функциональной бежевый жир. Клетка. 2014; 157: 1292–1308. [Бесплатная статья PMC] [PubMed] [Google Scholar]
  • Rao RR, Long JZ, White JP, Svensson KJ, Lou J, Lokurkar I., Jedrychowski MP, Ruas JL, Wrann CD, Lo JC и др.Метеориноподобный гормон, который регулирует иммунно-жировые взаимодействия, увеличивая термогенез бежевого жира. Клетка. 2014; 157: 1279–1291. [Бесплатная статья PMC] [PubMed] [Google Scholar]
  • Reilly SM, Chiang SH, Decker SJ, Chang L, Uhm M, Larsen MJ, Rubin JR, Mowers J, White NM, Hochberg I., et al. Ингибитор протеинкиназ TBK1 и IKK-e улучшает метаболические дисфункции, связанные с ожирением, у мышей. Nat Med. 2013; 19: 313–321. [Бесплатная статья PMC] [PubMed] [Google Scholar]
  • Rosen ED, Spiegelman BM.О чем мы говорим, когда говорим о жире. Клетка. 2014; 156: 20–44. [Бесплатная статья PMC] [PubMed] [Google Scholar]
  • Savage DB, Tan GD, Acerini CL, Jebb SA, Agostini M, Gurnell M, Williams RL, Umpleby AM, Thomas EL, Bell JD, et al. Человеческий метаболический синдром, возникающий в результате доминантно-отрицательных мутаций ядерного рецептора, рецептор-гамма, активируемый пролифератором пероксисом. Сахарный диабет. 2003; 52: 910–917. [PubMed] [Google Scholar]
  • Сил П., Бьорк Б., Ян В., Каджимура С., Чин С., Куанг С., Скайм А., Девараконда С., Конро Х. М., Эрдджумент-Бромаж Х и др.PRDM16 управляет переключением между коричневым жиром и скелетными мышцами. Природа. 2008; 454: 961–967. [Бесплатная статья PMC] [PubMed] [Google Scholar]
  • Seale P, Conroe HM, Estall J, Kajimura S, Frontini A, Ishibashi J, Cohen P, Cinti S, Spiegelman BM. PRDM16 определяет термогенную программу подкожной белой жировой ткани у мышей. J Clin Invest. 2011; 121: 96–105. [Бесплатная статья PMC] [PubMed] [Google Scholar]
  • Sharp LZ, Shinoda K, Ohno H, Scheel DW, Tomoda E, Ruiz L, Hu H, Wang L, Pavlova Z, Gilsanz V, et al.Человеческая летучая мышь обладает молекулярными сигнатурами, которые напоминают бежевые / бритые клетки. PLoS One. 2012; 7: e49452. [Бесплатная статья PMC] [PubMed] [Google Scholar]
  • Sun K, Halberg N, Khan M, Magalang UJ, Scherer PE. Селективное ингибирование индуцируемого гипоксией фактора 1α улучшает дисфункцию жировой ткани. Mol Cell Biol. 2013; 33: 904–917. [Бесплатная статья PMC] [PubMed] [Google Scholar]
  • Свенссон К.Дж., Лонг Дж. З., Едриховски М. П., Коэн П., Ло Дж. К., Сераг С., Кир С., Шинода С., Тарталья Дж. А., Рао Р. Р. и др.Секретируемый фрагмент Slit2 регулирует термогенез жировой ткани и метаболическую функцию. Cell Metab. 2016; 23: 454–466. [Бесплатная статья PMC] [PubMed] [Google Scholar]
  • Tseng YH, Kokkotou E, Schulz TJ, Huang TL, Winnay JN, Taniguchi CM, Tran TT, Suzuki R, Espinoza DO, Yamamoto Y, et al. Новая роль костного морфогенетического белка 7 в коричневом адипогенезе и расходе энергии. Природа. 2008; 454: 1000–1004. [Бесплатная статья PMC] [PubMed] [Google Scholar]
  • Unger RH, Scherer PE, Holland WL.Дихотомическая роль лептина и адипонектина как средств защиты от липотоксичности во время пира и голода. Mol Biol Cell. 2013; 24: 3011–3015. [Бесплатная статья PMC] [PubMed] [Google Scholar]
  • van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, Drossaerts JM, Kemerink GJ, Bouvy ND, Schrauwen P, Teule GJ. Холодная активированная коричневая жировая ткань у здоровых мужчин. N Engl J Med. 2009; 360: 1500–1508. [PubMed] [Google Scholar]
  • Виртанен К.А., Лиделл М.Э., Орава Дж., Хеглинд М., Вестергрен Р., Ниеми Т., Тейттонен М., Лайне Дж., Сависто Н. Дж., Энербак С. и др.Функциональная коричневая жировая ткань у здоровых взрослых. N Engl J Med. 2009; 360: 1518–1525. [PubMed] [Google Scholar]
  • Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW. Ожирение связано с накоплением макрофагов в жировой ткани. J Clin Invest. 2003; 112: 1796–1808. [Бесплатная статья PMC] [PubMed] [Google Scholar]
  • Wu J, Bostrom P, Sparks LM, Ye L, Choi JH, Giang AH, Khandekar M, Virtanen KA, Nuutila P, Schaart G, et al. Бежевые адипоциты представляют собой отдельный тип термогенных жировых клеток у мышей и людей.Клетка. 2012; 150: 366–376. [Бесплатная статья PMC] [PubMed] [Google Scholar]
  • Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, Sole J, Nichols A, Ross JS, Tartaglia LA, et al. Хроническое воспаление жира играет решающую роль в развитии инсулинорезистентности, связанной с ожирением. J Clin Invest. 2003; 112: 1821–1830. [Бесплатная статья PMC] [PubMed] [Google Scholar]
  • Зенг В., Пирзгальска Р.М., Перейра М.М., Кубасова Н., Баратейро А., Сейшас Э., Лу Й.Х., Козлова А., Восс Х., Мартинс Г.Г. и др. Симпатические нейро-жировые связи опосредуют липолиз, управляемый лептином.Клетка. 2015; 163: 84–94. [PubMed] [Google Scholar]
  • Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Позиционное клонирование гена ожирения мыши и его человеческого гомолога. Природа. 1994; 372: 425–432. [PubMed] [Google Scholar]

Что делают жиры в организме?

Стефани Датчен
Размещено 15 декабря 2010 г.

Общеизвестно, что слишком много холестерина и других жиров может привести к болезням, и что здоровая диета предполагает наблюдение за тем, сколько жирной пищи мы едим.Однако нашему телу для функционирования необходимо определенное количество жира, а мы не можем сделать его с нуля.

Триглицериды, холестерин и другие незаменимые жирные кислоты (научный термин, обозначающий жиры, которые организм не может производить самостоятельно) накапливают энергию, изолируют нас и защищают наши жизненно важные органы. Они действуют как посланники, помогая белкам выполнять свою работу. Они также запускают химические реакции, которые помогают контролировать рост, иммунную функцию, репродуктивную функцию и другие аспекты основного метаболизма.

Цикл производства, расщепления, хранения и мобилизации жиров лежит в основе того, как люди и все животные регулируют свою энергию.Дисбаланс на любом этапе может привести к болезням, включая болезни сердца и диабет. Например, наличие слишком большого количества триглицеридов в нашем кровотоке увеличивает риск закупорки артерий, что может привести к сердечному приступу и инсульту.

Жиры также помогают организму накапливать определенные питательные вещества. Так называемые «жирорастворимые» витамины — A, D, E и K — хранятся в печени и жировых тканях.

Зная, что жиры играют такую ​​важную роль во многих основных функциях организма, исследователи, финансируемые Национальным институтом здравоохранения, изучают их на людях и других организмах, чтобы больше узнать о нормальной и ненормальной биологии.

Положение о жирах в поисках насекомых

Эти липидные капли накапливают жир в клетках табачного рогатого червя, Manduca sexta . Предоставлено: Эстела Аррезе.

Несмотря на важность жира, никто еще не понимает, как именно люди хранят его и используют. В поисках инсайтов биохимик из Университета штата Оклахома Эстела Аррезе изучает метаболизм триглицеридов в неожиданных местах: тутовых шелкопрях, дрозофилах и комарах.

Триглицериды — основной вид потребляемого нами жира, они особенно подходят для хранения энергии, поскольку содержат в два раза больше энергии, чем углеводы или белки.

После расщепления триглицеридов в процессе пищеварения они попадают в клетки через кровоток. Часть жира сразу же используется для получения энергии. Остальное хранится внутри клеток в виде капель, называемых липидными каплями.

Когда нам нужна дополнительная энергия — например, когда мы бежим марафон, — наши тела используют ферменты, называемые липазами, для расщепления накопленных триглицеридов. Энергетические установки клетки, митохондрии, могут вырабатывать больше основного источника энергии организма: аденозинтрифосфата или АТФ.

Arrese работает над идентификацией, очисткой и определением роли отдельных белков, участвующих в метаболизме триглицеридов. Ее лаборатория была первой, кто очистил главный белок регуляции жира у насекомых, TGL, и теперь она пытается узнать, что он делает. Она также обнаружила функцию ключевого липидного капельного белка, называемого Lsd1, и исследует его сестру, Lsd2.

Работа Аррезе могла бы научить нас больше о таких расстройствах, как диабет, ожирение и болезни сердца. Кроме того, благодаря пониманию того, как насекомые используют жир, когда они превращаются и откладывают яйца, и выдвижению гипотезы о том, как нарушить эти процессы, ее открытия могут привести к новым способам для фермеров защитить свои посевы от вредителей, а чиновникам здравоохранения — к борьбе с болезнями, передаваемыми комарами, такими как малярия. и вирус Западного Нила.

Но прежде, чем что-либо из этого может произойти, говорит Аррезе, «нам нужно много изучать и иметь информацию на молекулярном уровне».

Холестерин и клеточные мембраны

Плазматическая мембрана — прекрасный пример правила, согласно которому масло и вода не смешиваются.

Одна из проблем Arrese — попытаться заставить маслянистые вещества, такие как жир, работать в лабораторных тестах, которые, как правило, основаны на воде. Однако наши клетки не могли бы функционировать без взаимной неприязни жира и воды.

Клеточные мембраны окружают наши клетки и органеллы внутри них.Жир, в частности холестерин, делает возможными эти мембраны. Жирные концы мембранных молекул отклоняются от воды внутри и снаружи клеток, в то время как нежирные концы тяготеют к ней. Молекулы спонтанно выстраиваются в линию, образуя полупроницаемую мембрану. Результат: гибкие защитные барьеры, которые, как вышибалы в клубе, позволяют только подходящим молекулам проникать в клетки и выходить из них.

Жуйте это в следующий раз, когда вы задумаетесь о судьбе жира в жареном картофеле.

Подробнее
Также в этой серии

Эта статья изнутри науки о жизни также появляется на LiveScience.

Что в жировой клетке?

Жир так часто рассматривается как враг — то, чего следует избегать или терять. Но жир также является важным компонентом тела. Без него люди бы замерзли. Наши нервы, без изоляции, будут трястись перекрещенными связями. Мы не сможем хранить важные запасы определенных витаминов или иметь работающую иммунную систему. На клеточном уровне жиры делают возможными мембраны, которые окружают клетки, и действуют как посредники, связывающиеся с белками и обеспечивающие различные реакции.

Имея это в виду, скромная жировая клетка кажется немного чудесной. Адипоциты, как их правильно называют, — это клетки, которые хранят избыточные липиды, молекулы, содержащие жиры и родственные вещества.

Адипоциты когда-то считались довольно скучными мешками энергии, но исследования последних нескольких десятилетий показали, что у них есть много дел в организме, от регулирования питательных веществ до высвобождения гормонов, которые влияют на кровяное давление, функцию щитовидной железы и даже репродуктивную функцию. . [Что такое целлюлит?]

Анатомия жира

Под микроскопом жировые клетки выглядят как выпуклые маленькие шарики.Как и другие клетки в организме, каждая имеет клеточную мембрану и ядро, но их основная масса состоит из капель хранящихся триглицеридов, каждая из которых состоит из трех молекул жирных кислот, прикрепленных к одной молекуле глицерина.

«Человеческий триглицерид выглядит точно так же, как оливковое масло, арахисовое масло и все другие триглицериды, которые мы выжимаем из семян растений», — сказал Рубен Меерман, физик, научный коммуникатор и автор книги «Большие мифы о жирах. Толстый Go? » (Ebury Australia, 2016).«У него такой же желтоватый цвет, такая же плотность энергии и такая же химическая формула».

Но не все адипоциты одинаковы. То, что мы обычно называем жиром, — это «белый жир», который является основным веществом, используемым для хранения энергии. Когда уровень инсулина повышается — скажем, после еды — белые адипоциты поглощают больше жирных кислот, буквально увеличиваясь в размерах, — сказал Меерман Live Science. Когда инсулин падает, жировые клетки высвобождают свои запасы в качестве источника быстрой энергии для тела.

Согласно статье 2006 года в журнале Nature, другие скопления адипоцитов используются в основном для поддержки, например, жировая подушка, окружающая глаза.Эти жировые клетки, вероятно, не выделяют много энергии в организм, если организм не переходит в режим голодания. Тело также откладывает жир под кожей (подкожный жир) и вокруг внутренних органов (висцеральный жир).

Клетки «коричневого жира», с другой стороны, являются богатыми железом клетками со своей уникальной функцией. Они экспрессируют гены, которые изменяют метаболизм для выработки тепла, что делает коричневую жировую ткань очень важной для поддержания температуры тела. В частности, бурые жировые клетки выделяют так называемый разобщающий белок-1 (UCP-1), который делает процесс окисления жирных кислот в электростанциях клеток (митохондриях) менее эффективным.Это означает, что большая часть энергии митохондрий «тратится» в виде тепла, тем самым нагревая тело, согласно статье 2017 года в журнале Endocrine Connections.

Новорожденные имеют высокий уровень бурого жира. Эти уровни снижаются с возрастом, и у взрослых большинство бурых жировых отложений скапливаются вокруг шеи и ключиц.

Третий тип жира, «бежевый жир», содержится в белой жировой ткани, но, в отличие от белых жировых клеток, эти клетки содержат UCP-1. Согласно статье Endocrine Connections, бежево-жировые клетки могут действовать как белый или коричневый жир, в зависимости от ситуации.

На что способен жир

Исследователи ожирения мечтают найти способы превратить белый жир в бурый жир, сжигающий энергию. Но белый жир — тоже довольно полезный продукт.

Помимо сохранения энергии, белые адипоциты помогают регулировать уровень сахара в крови. Они поглощают сахар или глюкозу в ответ на инсулин, секретируемый поджелудочной железой, вытягивая излишки сахара из кровотока. Согласно статье Nature 2006 года, это одна из самых серьезных проблем с избыточным телом: слишком много жира нарушает функцию регулирования глюкозы в адипоцитах (как и слишком мало жира), и уровень сахара в крови может быть нарушен.[Можно ли превратить жир в мышцы?]

Согласно той же статье, адипоциты также секретируют несколько белков, влияющих на уровень сахара в крови. Некоторые из них, такие как лептин, адипонектин и висфатин, снижают уровень глюкозы в кровотоке. Другие, такие как резистин и ретинол-связывающий белок 4, повышают уровень сахара в крови.

Жировая ткань также играет роль в иммунной системе. Адипоциты выделяют воспалительные соединения, называемые цитокинами, которые способствуют воспалению. (Воспаление может быть разрушительным, когда оно хроническое, но оно крайне важно для активации иммунных клеток в случае инфекции.Сальник, похожий на фартук, слой жира, который свисает перед органами брюшной полости, усеян скоплениями иммунных клеток, которые действуют как мониторы холла для брюшной полости, отбирая образцы жидкости между органами на предмет потенциальных захватчиков, согласно 2017 г. исследовательская работа.

Потеря жира

Согласно статье 2008 года в журнале Nature, в зрелом возрасте общее количество адипоцитов остается стабильным. Большая часть потери веса и увеличения веса происходит не из-за потери или увеличения адипоцитов, а из-за того, что эти клетки расширяются и сжимаются, поскольку энергия внутри сохраняется или сжигается.Согласно этому исследованию, адипоциты постепенно отмирают и заменяются. Средний оборот жировых клеток составляет около 8,4 процента в год, при этом половина жировых клеток в организме заменяется каждые 8,3 года.

Согласно Меерману, одно из самых больших заблуждений относительно жира состоит в том, что потерянный жир буквально сжигается как энергия.

«На самом деле происходит то, что все атомы жира соединяются с атомами кислорода, образуя углекислый газ и воду», — сказал он. «В ходе этого процесса выделяется много энергии, но ни один атом не разрушается или не превращается в энергию.«

Вода в результате этого процесса выводится с мочой, фекалиями и потом, — сообщила Меерман в статье British Medical Journal за 2014 год. Двуокись углерода выдыхается через легкие, что делает вашу дыхательную систему лучшим средством удаления жира.

Первоначально опубликовано на Live Science .

Какова функция жировых клеток?

Полный мужчина сидит на скамейке в парке

Кредит изображения: Stockbyte / Stockbyte / Getty Images

Согласно сообщениям Johns Hopkins Medicine Health Alerts, вопреки распространенному мнению, жировые клетки в жировой ткани — это не просто спящие хранилища.Жировые клетки динамичны и очень активны. По словам Сарин Гроппер, Джека Смита и Джеймса Гроффа в работе «Advanced Nutrition and Human Metabolism», жировые клетки жировой ткани играют чрезвычайно важную роль в метаболизме. По данным Национального института здоровья, инсулин стимулирует жировые клетки усваивать глюкозу. Триглицериды могут синтезироваться в жировых клетках из глюкозы под влиянием инсулина. По мере снижения уровня глюкозы в крови уровень инсулина падает, и жировая ткань способствует расщеплению триглицеридов на свободные жирные кислоты и глицерин.

Функция

Жировые клетки содержат триглицериды, которые питают большую часть внутренней работы и физической активности организма. Слой жира под кожей изолирует тело, сохраняя тепло. Подушечки жира действуют как амортизаторы, поддерживают и смягчают жизненно важные органы. Жир также помогает организму использовать углеводы и белки. Фрагменты жирового обмена сочетаются с фрагментами метаболизма глюкозы в энергетическом обмене. Жир сохраняет белок для других важных задач, обеспечивая организм энергией.

Типы

В организме есть два типа жира, белая и коричневая жировая ткань, которые выполняют две отдельные функции. Форма хранения, белая жировая ткань, обеспечивает жир, который другие клетки могут использовать для получения энергии. По словам Элеоноры Уитни и Шэрон Рольфс в «Understanding Nutrition», коричневая жировая ткань выделяет накопленную энергию в виде тепла. Излучая энергию в виде тепла, коричневая жировая ткань позволяет организму тратить энергию, а не накапливать ее. Выработка тепла чрезвычайно важна для новорожденных и людей, живущих в холодном климате.Большинство взрослых имеют лишь небольшое количество бурого жира в стратегически важных местах. Роль бурого жира в регулировании массы тела еще полностью не изучена.

Процесс

Когда потребляется больше калорий энергии, чем расходуется, большая часть избыточной энергии сохраняется в жировых клетках жировой ткани. Жировые клетки увеличиваются в размерах, когда они наполняются каплями жира, и могут делиться, когда достигают максимального размера. Когда клеткам нужна энергия, фермент липазы, чувствительный к гормонам, в жировых клетках расщепляет триглицериды, высвобождая глицерин и жирные кислоты в кровь, где они становятся доступными для других энергоемких клеток.

Значимость

Жировые клетки непрерывно расщепляют и восстанавливают триглицериды по мере необходимости. Эти процессы регулируются питанием, гормонами и факторами метаболизма, которые определяют, сколько жирных кислот циркулирует в крови и сколько жира откладывается в организме. Жир обеспечивает 60 процентов текущих энергетических потребностей организма в состоянии покоя и немного больше при длительной активности. По данным Национального института здоровья, по мере продолжения исследований понимание того, как инсулин стимулирует усвоение глюкозы жировыми клетками, может привести к более полному пониманию диабета и связанных с ним состояний.

Соображения

Ожирение развивается по мере увеличения количества и размера жировых клеток человека. При сжигании жира уменьшается размер жировых клеток, но не их количество. Согласно «Understanding Nutrition», люди с лишними жировыми клетками быстро восстанавливают потерянный вес.

Функции жиров — питание: наука и повседневное применение

Жиры выполняют полезные функции как в организме, так и в диете. В организме жир функционирует как важный депо для хранения энергии, обеспечивает изоляцию и защиту, а также играет важную роль в регулировании и передаче сигналов.Для выполнения этих функций не требуется большого количества диетического жира, потому что большинство молекул жира может быть синтезировано организмом из других органических молекул, таких как углеводы и белки (за исключением двух незаменимых жирных кислот). Однако жир также играет уникальную роль в диете, включая увеличение абсорбции жирорастворимых витаминов и улучшение вкуса и удовлетворения пищи. Давайте подробнее рассмотрим каждую из этих функций жиров в организме и в диете.

Функции жиров в организме

Накопление энергии

Избыточная энергия пищи, которую мы едим, включается в жировую ткань или жировую ткань.Большая часть энергии, необходимой человеческому организму, обеспечивается углеводами и липидами. Как обсуждалось в разделе «Углеводы», глюкоза хранится в организме в виде гликогена. Хотя гликоген является готовым источником энергии, он довольно объемный из-за большого содержания воды, поэтому организм не может хранить его большую часть надолго. С другой стороны, жиры могут служить большим и более долгосрочным запасом энергии. Жиры плотно упаковываются без воды и хранят гораздо большее количество энергии в ограниченном пространстве. Грамм жира плотно сконцентрирован с энергией, содержащей более чем в два раза больше энергии, чем грамм углеводов.

Мы используем энергию, запасенную в жире, для удовлетворения наших основных энергетических потребностей, когда мы отдыхаем, и для подпитки наших мышц для движения в течение дня, от ходьбы до класса, игр с детьми, танцев во время приготовления ужина или питания. через смену на работе. Исторически сложилось так, что когда люди полагались на охоту и сбор диких продуктов или на успех сельскохозяйственных культур, способность накапливать энергию в виде жира была жизненно важной для выживания в неурожайные времена. Голод остается проблемой для людей во всем мире, и возможность накапливать энергию в хорошие времена может помочь им пережить период отсутствия продовольственной безопасности.В других случаях энергия, запасенная в жировой ткани, может позволить человеку пережить длительную болезнь.

В отличие от других клеток организма, которые могут накапливать жир в ограниченных количествах, жировые клетки специализируются на хранении жира и могут увеличиваться в размерах почти до бесконечности. Переизбыток жировой ткани может нанести вред вашему здоровью не только из-за механической нагрузки на организм из-за лишнего веса, но также из-за гормональных и метаболических изменений. Ожирение может увеличить риск многих заболеваний, в том числе диабета 2 типа, болезней сердца, инсульта, болезней почек и некоторых видов рака.Это также может повлиять на репродуктивную функцию, когнитивные функции и настроение. Таким образом, хотя некоторые жировые отложения имеют решающее значение для нашего выживания и хорошего здоровья, в больших количествах они могут быть препятствием для поддержания хорошего здоровья.

Рисунок 5.3. Сканирующая электронная микрофотография жировой ткани, показывающая адипоциты. Компьютерный оранжевый.

Изоляция и защита

Средний процент жира в организме мужчины составляет от 18 до 24 процентов, а у женщины — от 25 до 31 процента. 1 , но жировая ткань может составлять гораздо больший процент массы тела в зависимости от степени ожирения человека.Часть этого жира хранится в брюшной полости, называемая висцеральным жиром , , а часть — непосредственно под кожей, называемая подкожным жиром . Висцеральный жир защищает жизненно важные органы, такие как сердце, почки и печень. Покровный слой подкожного жира изолирует тело от экстремальных температур и помогает контролировать внутренний микроклимат. Он накрывает наши руки и ягодицы и предотвращает трение, так как эти области часто соприкасаются с твердыми поверхностями.Это также дает телу дополнительную подкладку, необходимую при занятиях физически сложными видами деятельности, такими как катание на коньках, верховая езда или сноуборд.

Рисунок 5.4. Есть два типа жира, хранящегося в жировой ткани: подкожный жир и висцеральный жир.

Регулировка и сигнализация

Жиры помогают организму вырабатывать и регулировать гормоны. Например, жировая ткань выделяет гормон лептин, который сигнализирует об энергетическом статусе организма и помогает регулировать аппетит.Жир также необходим для репродуктивного здоровья; женщина, которой не хватает достаточного количества, может прекратить менструацию и не сможет забеременеть, пока ее тело не накопит больше энергии в виде жира. Незаменимые жирные кислоты омега-3 и омега-6 помогают регулировать холестерин и свертываемость крови, а также контролировать воспаление в суставах, тканях и кровотоке. Жиры также играют важную функциональную роль в поддержании передачи нервных импульсов, хранении памяти и структуре тканей. Липиды особенно важны для мозговой активности по структуре и функциям, помогая формировать мембраны нервных клеток, изолируя нейроны и облегчая передачу электрических импульсов по всему мозгу.

Функция жиров в ДИЕТЕ

Способствует абсорбции и увеличивает биодоступность

Диетические жиры в пищевых продуктах, которые мы едим, помогают транспортировать жирорастворимые витамины, переносят их через пищеварительный процесс и улучшают их всасывание в кишечнике. Это улучшенное всасывание известно как повышенная биодоступность . Пищевые жиры также могут увеличивать биодоступность соединений, известных как фитохимические вещества — несущественные растительные соединения, которые считаются полезными для здоровья человека.Многие фитохимические вещества являются жирорастворимыми, например ликопин, содержащийся в помидорах, и бета-каротин, содержащийся в моркови, поэтому диетический жир улучшает всасывание этих молекул в пищеварительном тракте.

Помимо улучшения биодоступности жирорастворимых витаминов, одними из лучших пищевых источников этих витаминов также являются продукты с высоким содержанием жиров. Например, хорошими источниками витамина Е являются орехи (включая арахисовое масло и другие ореховые масла), семена и растительные масла, такие как те, которые содержатся в заправках для салатов, и трудно потреблять достаточное количество витамина Е, если вы едите очень мало. жирная диета.(Хотя жареные продукты обычно готовятся на растительных маслах, витамин E разрушается при высокой температуре, поэтому вы не найдете много витамина E в картофеле фри или луковых кольцах. Лучше всего использовать цельные продукты с минимальной обработкой.) масла также содержат витамин K, а жирная рыба и яйца являются хорошими источниками витаминов A и D.

Улучшение запаха, вкуса и насыщения пищевых продуктов

Жиры удовлетворяют аппетит (желание есть ), потому что они придают пищу вкус.Жир содержит растворенные соединения, которые придают аппетитный аромат и вкус. Жир также придает текстуру, делая выпечку влажной и слоистой, жареную — хрустящей и добавляя сливочности таким продуктам, как мороженое и сливочный сыр. Рассмотрите нежирный сливочный сыр; когда жир удаляется из сливок, большая часть вкуса также теряется. В результате он зернистый и безвкусный — совсем не похож на его полножирный аналог — и многие добавки используются в попытке заменить утраченный вкус.

Жиры утоляют голод ( нужно для еды), потому что они медленнее перевариваются и усваиваются, чем другие макроэлементы.Таким образом, пищевой жир способствует сытости — чувству сытости или сытости. Когда жирная пища проглатывается, организм реагирует, позволяя процессам, контролирующим пищеварение, замедлять движение пищи по пищеварительному тракту, давая жирам больше времени для переваривания и всасывания и способствуя общему чувству сытости. Иногда, прежде чем наступает чувство сытости, люди злоупотребляют жирной пищей, находя восхитительный вкус непреодолимым. Замедление, чтобы оценить вкус и текстуру пищи, может дать вашему телу время послать в мозг сигналы о сытости, чтобы вы могли съесть достаточно, чтобы насытиться, не чувствуя себя слишком сытым.

Обеспечение незаменимых жирных кислот

Большинство липидных молекул могут быть синтезированы в организме из других органических молекул, поэтому их не нужно специально вводить в рацион. Однако есть два, которые считаются незаменимыми и должны быть включены в рацион: линолевая кислота и альфа-линоленовая кислота. Мы подробно обсудим эти две жирные кислоты позже в этом модуле.

Атрибуции:

Артикул:

Изображений:

4.2: Что такое липиды? — Медицина LibreTexts

Навыки для развития

  • Объясните роль липидов в общем состоянии здоровья.

Липиды — важные жиры, которые выполняют разные функции в организме человека. Распространенное заблуждение состоит в том, что жир просто полнеет. Однако, вероятно, именно из-за жира мы все здесь. На протяжении всей истории было много случаев, когда еды не хватало. Наша способность накапливать избыточную калорийную энергию в виде жира для использования в будущем позволила нам продолжать жить как биологический вид во время голода.Итак, нормальные жировые запасы — это сигнал о том, что обменные процессы идут эффективно и человек здоров.

Липиды — это семейство органических соединений, которые в основном нерастворимы в воде. Липиды, состоящие из жиров и масел, представляют собой молекулы, которые выделяют высокую энергию и имеют химический состав в основном из углерода, водорода и кислорода. Липиды выполняют три основные биологические функции в организме: они служат структурными компонентами клеточных мембран, действуют как хранилища энергии и действуют как важные сигнальные молекулы.

Три основных типа липидов — это триацилглицерины (также называемые триглицеридами), фосфолипиды и стерины. Триацилглицерины (также известные как триглицериды) составляют более 95 процентов липидов в рационе и обычно содержатся в жареной пище, растительном масле, сливочном масле, цельном молоке, сыре, сливочном сыре и некоторых видах мяса. Натуральные триацилглицерины содержатся во многих продуктах питания, включая авокадо, оливки, кукурузу и орехи. Мы обычно называем содержащиеся в пище триацилглицерины «жирами» и «маслами».«Жиры — это липиды, твердые при комнатной температуре, а масла — жидкие. Как и большинство жиров, триацилглицерины не растворяются в воде. Термины «жиры», «масла» и «триацилглицерины» носят произвольный характер и могут использоваться как взаимозаменяемые. В этой главе, когда мы используем слово жир, мы имеем в виду триацилглицерины.

Фосфолипиды составляют лишь около 2 процентов пищевых липидов. Они водорастворимы и содержатся как в растениях, так и в животных. Фосфолипиды имеют решающее значение для создания защитного барьера или мембраны вокруг клеток вашего тела.Фактически, фосфолипиды синтезируются в организме с образованием мембран клеток и органелл. В крови и биологических жидкостях фосфолипиды образуют структуры, в которых жир заключен и транспортируется по кровотоку.

Рисунок 4.2.1: Типы липидов

Стерины — наименее распространенный тип липидов. Холестерин, пожалуй, самый известный стерол. Хотя холестерин имеет печально известную репутацию, организм получает лишь небольшое количество холестерина с пищей — организм производит большую часть этого холестерина.Холестерин является важным компонентом клеточной мембраны и необходим для синтеза половых гормонов, витамина D и солей желчных кислот.

Позже в этой главе мы рассмотрим каждый из этих липидов более подробно и узнаем, как функционируют их различные структуры, поддерживая работу вашего тела.

Функции липидов в организме: запасание энергии

Избыточная энергия пищи, которую мы едим, переваривается и включается в жировую ткань или жировую ткань. Большая часть энергии, необходимой человеческому организму, обеспечивается углеводами и липидами.Как обсуждалось в главе 3 «Углеводы», глюкоза хранится в организме в виде гликогена. В то время как гликоген является готовым источником энергии, липиды в первую очередь служат в качестве энергетического резерва. Как вы помните, гликоген довольно объемный и содержит много воды, поэтому организм не может хранить слишком много воды надолго. В качестве альтернативы жиры плотно упакованы без воды и хранят гораздо большее количество энергии в ограниченном пространстве. Грамм жира плотно сконцентрирован с энергией — он содержит более чем вдвое больше энергии, чем грамм углеводов.Энергия необходима для того, чтобы приводить в действие мышцы для всей физической работы и игры, в которой участвует средний человек или ребенок. Например, накопленная в мышцах энергия толкает спортсмена по дорожке, подстегивает ноги танцора, чтобы продемонстрировать новейшие причудливые шаги, и удерживает все движущиеся части тела работают без сбоев.

В отличие от других клеток организма, которые могут накапливать жир в ограниченных количествах, жировые клетки специализируются на хранении жира и могут увеличиваться в размерах почти до бесконечности. Избыток жировой ткани может вызвать чрезмерную нагрузку на организм и нанести вред вашему здоровью.Серьезным воздействием избыточного жира является накопление слишком большого количества холестерина в стенке артерий, что может утолщать стенки артерий и приводить к сердечно-сосудистым заболеваниям. Таким образом, хотя некоторые жировые отложения имеют решающее значение для нашего выживания и хорошего здоровья, в больших количествах они могут быть препятствием для поддержания хорошего здоровья.

Функции липидов в организме: регулирование и сигнализация

Триацилглицерины регулируют внутренний климат тела, поддерживая постоянную температуру. Те, у кого недостаточно жира в теле, как правило, раньше простужаются, часто утомляются и имеют пролежни на коже из-за дефицита жирных кислот.Триацилглицерины также помогают организму вырабатывать и регулировать гормоны. Например, жировая ткань выделяет гормон лептин, регулирующий аппетит. В репродуктивной системе жирные кислоты необходимы для правильного репродуктивного здоровья; женщины, которым не хватает необходимого количества, могут прекратить менструацию и стать бесплодными. Незаменимые жирные кислоты омега-3 и омега-6 помогают регулировать холестерин и свертываемость крови, а также контролировать воспаление в суставах, тканях и кровотоке. Жиры также играют важную функциональную роль в поддержании передачи нервных импульсов, хранении памяти и структуре тканей.В частности, в мозге липиды определяют активность мозга по структуре и функциям. Они помогают формировать мембраны нервных клеток, изолируют нейроны и способствуют передаче электрических импульсов по всему мозгу.

Рисунок 4.2.2: Липиды служат сигнальными молекулами; они являются катализаторами активности электрических импульсов в головном мозге. © Thinkstock

Функции липидов в организме: изоляция и защита

Знаете ли вы, что до 30 процентов веса тела состоит из жировой ткани? Некоторые из них состоят из висцерального жира или жировой ткани, окружающей нежные органы.Жизненно важные органы, такие как сердце, почки и печень, защищены висцеральным жиром. Состав мозга на 60% состоит из жира, что демонстрирует важную структурную роль, которую жир выполняет в организме. Возможно, вы больше всего знакомы с подкожным жиром или подкожным жиром. Этот покрывающий слой ткани изолирует тело от экстремальных температур и помогает контролировать внутренний микроклимат. Он накрывает наши руки и ягодицы и предотвращает трение, так как эти области часто соприкасаются с твердыми поверхностями.Это также дает телу дополнительную подкладку, необходимую при занятиях физически сложными видами деятельности, такими как катание на коньках или роликовых коньках, верховая езда или сноуборд.

Функции липидов в организме: помощь пищеварению и повышение биодоступности

Диетические жиры, содержащиеся в продуктах, которые мы едим, расщепляются в нашей пищеварительной системе и начинают транспортировку ценных питательных микроэлементов. Благодаря переносу жирорастворимых питательных веществ через процесс пищеварения кишечное всасывание улучшается.Это улучшенное всасывание также известно как повышенная биодоступность. Жирорастворимые питательные вещества особенно важны для хорошего здоровья и обладают множеством функций. Витамины A, D, E и K — жирорастворимые витамины — в основном содержатся в пищевых продуктах, содержащих жиры. Некоторые жирорастворимые витамины (например, витамин А) также содержатся в естественно обезжиренных продуктах, таких как зеленые листовые овощи, морковь и брокколи. Эти витамины лучше всего усваиваются в сочетании с продуктами, содержащими жир. Жиры также увеличивают биодоступность соединений, известных как фитохимические вещества, которые являются компонентами растений, такими как ликопин (содержится в томатах) и бета-каротин (содержится в моркови).Считается, что фитохимические вещества способствуют здоровью и благополучию. В результате, употребление в пищу помидоров с оливковым маслом или заправкой для салатов облегчит всасывание ликопина. Другие важные питательные вещества, такие как незаменимые жирные кислоты, являются составными частями самих жиров и служат строительными блоками клетки.

Рисунок 4.2.3: Пищевые источники жирорастворимых витаминов

Обратите внимание, что удаление липидных элементов из пищи также снижает содержание в ней жирорастворимых витаминов.При переработке таких продуктов, как зерно и молочные продукты, эти важные питательные вещества теряются. Производители заменяют эти питательные вещества с помощью процесса, называемого обогащением.

Инструменты для перемен

Помните, что жирорастворимым питательным веществам для эффективного усвоения необходим жир. Для следующего перекуса поищите продукты, содержащие витамины A, D, E и K. Есть ли в этих продуктах жиры, которые помогут вам их усвоить? Если нет, подумайте о том, как добавить немного полезных жиров, чтобы улучшить их усвоение.

Роль липидов в продуктах питания: источник высокой энергии

Продукты, богатые жирами, от природы имеют высокую калорийность.Продукты с высоким содержанием жира содержат больше калорий, чем продукты с высоким содержанием белка или углеводов. В результате продукты с высоким содержанием жиров являются удобным источником энергии. Например, 1 грамм жира или масла обеспечивает 9 килокалорий энергии по сравнению с 4 килокалориями в 1 грамме углеводов или белков. В зависимости от уровня физической активности и потребностей в питании потребности в жирах сильно различаются от человека к человеку. Когда потребность в энергии высока, организм приветствует высокую калорийность жиров.Например, младенцы и растущие дети нуждаются в достаточном количестве жира для поддержания нормального роста и развития. Если младенцу или ребенку давать диету с низким содержанием жиров в течение длительного периода, рост и развитие не будут нормально развиваться. Другие люди с высокими энергетическими потребностями — это спортсмены, люди, выполняющие тяжелую физическую работу, и те, кто выздоравливает после болезни.

Рисунок 4.2.4: Спортсмены имеют высокие потребности в энергии. © Thinkstock

Когда организм использует все свои калории из углеводов (это может произойти всего после двадцати минут упражнений), он начинает потребление жира.Профессиональный пловец должен потреблять большое количество пищевой энергии, чтобы соответствовать требованиям плавания на длинные дистанции, поэтому есть богатая жирами пища имеет смысл. Напротив, если человек, ведущий малоподвижный образ жизни, ест такую ​​же жирную пищу, он будет потреблять больше жировых калорий, чем требуется их организму, всего за несколько укусов. Соблюдайте осторожность — потребление калорий сверх энергетической потребности является фактором ожирения.

Роль липидов в пище: запах и вкус

Жир содержит растворенные соединения, которые придают аппетитный аромат и вкус и улучшают вкусовые качества пищи.Жир также придает еде текстуру. Выпечка получается мягкой и влажной. При жарке продукты сохраняют вкус и сокращают время приготовления. Сколько времени вам нужно, чтобы вспомнить запах вашего любимого блюда? Какой была бы еда без этого пикантного аромата, который доставил бы удовольствие вашим чувствам и повысил вашу готовность к еде?

Жир играет еще одну важную роль в питании. Жир способствует насыщению или ощущению сытости. Когда жирная пища проглатывается, организм реагирует, позволяя процессам, контролирующим пищеварение, замедлять движение пищи по пищеварительному тракту, тем самым способствуя общему ощущению сытости.Часто, прежде чем наступает чувство сытости, люди злоупотребляют жирной пищей, находя восхитительный вкус непреодолимым. Действительно, именно то, что делает жирную пищу привлекательной, также делает ее препятствием для поддержания здорового питания.

Инструменты для размены

Хотя жиры придают нашим продуктам восхитительный запах, вкус и текстуру, они также содержат большое количество калорий. Чтобы позволить вашему телу ощутить эффект сытости от жира, прежде чем вы переедете, попробуйте смаковать жирную пищу.Медленное питание позволит вам полностью насладиться ощущением и насытиться меньшей порцией. Не забывайте не торопиться. Пейте воду между укусами или ешьте нежирную пищу до и после более жирной. Продукты с низким содержанием жира обеспечат большую массу, но с меньшим количеством калорий.

Основные выводы

  • Липиды включают триацилглицерины, фосфолипиды и стерины.
  • Триацилглицерины, наиболее распространенный липид, составляют большую часть жировых отложений и описываются в пищевых продуктах как жиры и масла.
  • Избыточная энергия пищи хранится в организме в виде жировой ткани.
  • Жиры имеют решающее значение для поддержания температуры тела, смягчения жизненно важных органов, регулирования гормонов, передачи нервных импульсов и сохранения памяти.
  • Липиды переносят жирорастворимые питательные вещества и фитохимические вещества и способствуют биодоступности этих соединений.
  • Жир — удобный источник энергии для людей с высокими энергетическими потребностями.
  • Жир обеспечивает вдвое больше энергии на грамм, чем белок или углеводы, усиливает запах и вкус пищи и способствует насыщению.

Обсуждение стартеров

  • Обсудите роль липидов в нашем рационе и их важнейшие функции в организме.
  • Объясните важность жиров для биодоступности других питательных веществ.
  • Обсудите роль жиров как источника энергии для организма.

жирных кислот, сигнализация клеток | Изучите науку в Scitable

Bergstrom, S.K. Простагландины: от лаборатории к клинике.(1982).

Берр, Г. О. и Берр, М. М. Новое заболевание дефицита, вызванное жестким исключением жиров из рациона. Journal of Biological Chemistry 82, 345–367 (1929).

Берр, Г.О., Берр, М. М. и др. . О жирных кислотах, необходимых в питании. III. Журнал биологической химии 97 1–9 (1932).

Кори, Э. Логика химического синтеза: многоступенчатый синтез сложных карбогенных молекул (1990).

Девейн, В. А., Ханус, Л., и др. . Выделение и структура компонента мозга, который связывается с каннабиноидным рецептором. Наука 258, 1946–1949 (1992). DOI: 10.1126 / science.1470919.

Фитцджеральд, Г.А. ЦОГ-2 и не только: подходы к ингибированию простагландинов при заболеваниях человека. Nature Reviews Drug Discovery 2 , 879-890 (2003) DOI: 10.1038 / nrd1225.

Совет по пищевым продуктам и питанию, Медицинский институт национальных академий.Нормы потребления энергии, углеводов, клетчатки, жиров, жирных кислот, холестерина, белков и аминокислот с пищей (2002).

Джастис, Э. и Каррутерс, Д. М. Сердечно-сосудистый риск и ингибирование ЦОГ-2 в ревматологической практике. Journal of Human Hypertension 19 , 1-5 (2005). DOI: 10.1038 / sj.jhh.1001777.

Вейн, Дж. Р. Ингибирование синтеза простагландинов как механизм действия аспирин-подобных препаратов.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Copyright © 2007 - 2025 Андрей Антонов
BMP7 костный морфогенетический белок 7
FGF21 фактор роста фибробластов 21
HIF-1α
фактор HIF-1α Ipoxia Ipoxia -kappa-B киназа эпсилон
ILC2s врожденные лимфоидные клетки 2 типа
NAFLD неалкогольная жировая болезнь печени
RBP4 Retin киназа 1
TNF-α Фактор некроза опухоли α
Tregs регуляторные Т-клетки
UCP1 разобщающий белок 1