Физические свойства воды
Вода является одним из основных веществ, которые обеспечивают существование планеты и человечества. Это совершенно уникальный элемент, без которого невозможна жизнь любого живого существа. Некоторые химические и физические свойства воды уникальны.
Важность этого вещества трудно переоценить. Вода занимает большую часть планеты, образует океаны, моря, реки и прочие водоемы. Она непосредственно участвует в формировании климата и погоды, обеспечивая тем самым определенные условия существования в том или ином уголке планеты.
Для многих организмов она служит средой обитания. Кроме того, практически каждое живое существо в той или иной мере состоит именно из воды. Например, содержание ее в организме человека составляет от 70 до 90 процентов.
Физические свойства воды: краткая характеристика
Молекула воды уникальна. Формула ее наверняка известна всем: h3O. Но вот некоторые физические свойства воды напрямую зависят от строения ее молекулы.
В природе вода существует сразу в трех агрегатных состояниях. При нормальных условиях это жидкое вещество без цвета, запаха и вкуса. При падении температуры вода кристаллизируется и превращается в лед. При повышении температуры жидкость переходит в газообразное состояние – водяной пар.
Вода характеризируется высокой плотностью, которая составляет примерно 1 грамм на кубический сантиметр. Кипение воды наступает при повышении температуры до ста градусов по Цельсию. А вот при падении температуры до 0 градусов жидкость превращается в лед.
Интересно, что снижение атмосферного давления вызывает изменение данных показателей – вода закипает при меньшей температуре.
Теплопроводность воды составляет примерно 0,58 Вт/(м*К). Еще один важный показатель – это ее высокое поверхностное натяжение, которое практически равно соответствующему показателю у ртути.
Уникальные физические свойства воды
Как уже упоминалось, именно вода обеспечивает нормальное существование планеты, влияя на климат и жизнедеятельность организмов. Но это вещество на самом деле является уникальным. Именно эти удивительные свойства воды обеспечивают жизнь.
Взять, к примеру, плотность льда и воды. В большинстве случаев при замерзании молекулы веществ располагаются ближе друг к другу, структура их становится компактнее и плотнее. Но с водой эта схема не работает. Впервые это удивительное свойство было описано еще Галилеем.
Если медленно понижать температуру и следить за замерзанием воды, то сначала схема будет вполне стандартной – вещество будет становиться все плотнее и компактнее. Изменения произойдут после того, как температура достигнет +4 градусов. При этом показателе вода неожиданно становится легче. Именно поэтому лед плавает по поверхности воды, но не тонет. Кстати, эта особенность обеспечивает выживание водной флоры и фауны – вода редко промерзает полностью, сохраняя жизнь своим обитателям.
Кстати, при замерзании вещество расширяется примерно на 9%. Такая особенность воды вызывает естественную коррозию горных пород. С другой стороны, трубы водопровода именно поэтому разрываются при неожиданном похолодании.
Но это далеко не все интересные свойства воды. Еще одна ее уникальная особенность – это аномально высокая теплоемкость. Например, того количество тепла, которое необходимо для нагревания одного грамма воды на один градус, хватит, чтобы разогреть примерно 10 г меди или 9 г железа.
Весь мировой океан – это глобальный термостат, который сглаживает колебания температуры, причем как суточные, так и годовые. Кстати, этими же свойствами наделен и водяной пар, который содержится в атмосфере. Ни для кого не секрет, что для пустыни характерны резкие температурные изменения – днем слишком жарко, а в ночное время очень холодно. Это связано как раз с сухим воздухом и отсутствием необходимого количества водяного пара.
Научная работа по физике «Удивительные свойства воды»
ФИЗИЧЕСКИЕ СВОЙСТВА ВОДЫ И ЕЁ АНОМАЛИИ
Мы все привыкли воспринимать воду как должное, забывая, что это уникальный элемент, без которого не было бы жизни на нашей планете. Мало кто задумывается над удивительными свойствами воды, и это, пожалуй, понятно – ведь вода повсюду окружает нас, она очень обычна на нашей планете. Ну, а обычное никогда не кажется удивительным. Однако сама обыденность необычна. Ведь никакое другое вещество не встречается на Земле в таких количествах, да еще одновременно в трех состояниях: твердом, жидком и газообразном. Каждый день мы используем воду для повседневных нужд и не задумываемся о том, как мало мы в действительности знаем о ней. Используя воду ежедневно для приготовления пищи, бытовых, сельскохозяйственных и технических целей, мы не задумываемся о ее роли в нашей жизни. Сколько тайн и загадок таит в себе такое близкое и знакомое понятие – вода?
Вода обладает многими интересными свойствами, резко отличающими ее от всех других жидкостей. И если бы вода вела себя «как положено», то Земля стала бы просто неузнаваемой. Для воды, будто законы не писаны! Но, благодаря ее капризам, не могла бы родиться и развиваться жизнь.
Физические свойства воды
Состояние (ст.усл.): жидкость
Плотность: 0,9982 г/куб.см
Динамическая вязкость (ст.усл.): 0,00101 Па•с (при 20°C)
Кинематическая вязкость (ст.усл.): 0,01012 кв.см/с (при 20°C)
Термические свойства воды:
Температура плавления: 0°C
Температура кипения: 99,974°C
Тройная точка: 0,01 °C, 611,73 Па
Критическая точка: 374°C, 22,064 MПа
Молярная теплоёмкость(ст.усл.): 75,37 Дж/(моль•К)
Теплопроводность(ст.усл.): 0,56 Вт/(м•K)
Агрегатные состояния воды:
При атмосферном давлении вода замерзает (превращается в лёд) при температуре в 0°C и кипит (превращается в водяной пар) при температуре 100°C.
При снижении давления температура плавления воды медленно растёт, а температура кипения — падает.
При давлении в 611,73 Па (около 0,006 атм) температура кипения и плавления совпадает и становится равной 0,01°C. Такое давление и температура называются тройной точкой воды.
При более низком давлении вода не может находиться в жидком состоянии, и лёд превращается непосредственно в пар. Температура возгонки льда падает со снижением давления.
При росте давления температура кипения воды растёт, плотность водяного пара в точке кипения тоже растёт, а жидкой воды — падает.
При температуре 374°C (647 K) и давлении 22,064 МПа (218 атм) вода проходит критическую точку. В этой точке плотность и другие свойства жидкой и газообразной воды совпадают.
При более высоком давлении нет разницы между жидкой водой и водяным паром, следовательно, нет и кипения или испарения.
Так же возможны метастабильные состояния — пересыщенный пар, перегретая жидкость, переохлаждённая жидкость. Эти состояния могут существовать длительное время, однако они неустойчивы и при соприкосновении с более устойчивой фазой происходит переход. Например, нетрудно получить переохлаждённую жидкость, охладив чистую воду в чистом сосуде ниже 0°C, однако при появлении центра кристаллизации жидкая вода быстро превращается в лёд.
Вода обладает рядом необычных особенностей:
При таянии льда, его плотность увеличивается (с 0,9 до 1 г/куб.см). Почти у всех остальных веществ при плавлении плотность уменьшается.
При нагревании от 0°C до 4°C (точнее 3,98°C), вода сжимается. Благодаря этому могут жить рыбы в замерзающих водоёмах: когда температура падает ниже 4°C, более холодная вода, как менее плотная остаётся на поверхности и замерзает, а под льдом сохраняется положительная температура.
Высокая температура и удельная теплота плавления (0°C и 333,55 кДж/кг), температура кипения (100°C) и удельная теплота парообразования (2250 КДж/кг), по сравнению с соединениями водорода с похожим молекулярным весом.
Высокая теплоёмкость жидкой воды.
Высокая вязкость.
Высокое поверхностное натяжение.
Отрицательный электрический потенциал поверхности воды.
Все эти особенности связаны с наличием водородных связей. Из-за большой разности электроотрицательностей атомов водорода и кислорода электронные облака сильно смещены в сторону кислорода. По причине этого, а также того, что ион водорода не имеет внутренних электронных слоев и обладает малыми размерами, он может проникать в электронную оболочку отрицательно поляризованного атома соседней молекулы. Благодаря этому, каждый атом кислорода притягивается к атомам водорода других молекул и наоборот. Каждая молекула воды может участвовать максимум в четырёх водородных связях: 2 атома водорода — каждый в одной, а атом кислорода — в двух; в таком состоянии молекулы находятся в кристалле льда. При таянии льда часть связей рвётся, что позволяет уложить молекулы воды плотнее; при нагревании воды связи продолжают рваться, и плотность её растёт, но при температуре выше 4°С этот эффект становится слабее, чем тепловое расширение. При испарении рвутся все оставшиеся связи. Разрыв связей требует много энергии, отсюда высокая температура и удельная теплота плавления и кипения и высокая теплоёмкость. Вязкость воды обусловлена тем, что водородные связи мешают молекулам воды двигаться с разными скоростями.
По сходным причинам вода является хорошим растворителем полярных веществ. Каждая молекула растворяемого вещества окружается молекулами воды, причём положительно заряженные участки молекулы растворяемого вещества притягивают атомы кислорода, а отрицательно заряженные — атомы водорода. Поскольку молекула воды мала по размерам, много молекул воды могут окружить каждую молекулу растворяемого вещества.
Это свойство воды используется живыми существами. В живой клетке и в межклеточном пространстве вступают во взаимодействие растворы различных веществ в воде. Вода необходима для жизни всех без исключения одноклеточных и многоклеточных живых существ на Земле.
Чистая (не содержащая примесей) вода — хороший изолятор. При нормальных условиях вода слабо диссоциирована и концентрация протонов (точнее, ионов гидроксония H3O+) и гидроксильных ионов HO — составляет 0,1 мкмоль/л. Но поскольку вода — хороший растворитель, в ней практически всегда растворены те или иные соли, то есть в воде присутствуют положительные и отрицательные ионы. Благодаря этому вода проводит электричество. По электропроводности воды можно определить её чистоту.
Вода имеет показатель преломления n=1,33 в оптическом диапазоне. Однако она сильно поглощает инфракрасное излучение, и поэтому водяной пар является основным естественным парниковым газом, отвечающим более чем за 60% парникового эффекта. Благодаря большому дипольному моменту молекул, вода также поглощает микроволновое излучение, на чём основан принцип действия микроволновой печи.
«Вода! У тебя нет ни вкуса, ни цвета, ни запаха, тебя не опишешь, тобой наслаждаешься, не понимая, что ты такое. Ты не просто необходима для жизни, ты и есть жизнь… Ты — величайшее в мире богатство…».
Антуан де Сент-Экзюпери
Огромное значение воды и важность проблем, связанных с ее загрязнением ни у кого не вызывает сомнений. Запасы пресной воды ограничены. Берегите себя. Берегите воду. Берегите нашу планету!
Аномалии воды — отклонения от нормальных свойств тел — до конца не выяснены и сегодня, но главная причина их известна: строение молекул воды. Атомы водорода присоединяются к атому кислорода не симметрично с боков, а тяготеют к одной стороне. Изучение воды продолжается.
Целебные свойства воды
Вода — самое распространенное на нашей планете и самое загадочное вещество. Она существует в самых разных состояниях, обладая множеством жизненно важных свойств. Она способна вести себя в организме и как эликсир жизни, и как ее враг.
Таким образом, качество воды исключительно важно для жизни живого организма, качество воды определяет качество здоровья человека, в связи с чем невозможно переоценить роль воды в нашей жизни. Все физиологические процессы, происходящие в организме, в той или иной степени связаны с водой. Без нее невозможно пищеварение, синтез необходимых веществ в клетках организма, выделение большинства вредных продуктов обмена.
Суточная потребность человека в воде определяется из расчета 40 мл на 1 кг веса, то есть 2,5-2,8 л. В среднем с питанием и питьем мы потребляем 1,5-2 л (учитывая воду во фруктах и овощах). Вода, выделяющаяся в результате внутренних процессов, составляет около 400 мл. Общее количество воды, необходимое для жизнедеятельности — 2 -2,5 л в сутки.
Вода – как вещество, без которого совершенно невозможно представить живую природу, обладает целым рядом целебных свойств. У народов всех стран существуют сказания о чудодейственных свойствах воды: о «живой» и «мертвой» воде, омолаживающей воде горных источников, целительных силах морской воды.
Известный целитель XIX века Себастьян Кнейп из Баварии написал книгу «Мое водолечение», в которой он изложил 35-летний опыт применения воды в излечении многих болезней.
Научные исследования, которые проводятся и в наше время, дают объяснение многим целебным свойствам воды. Несколько слов о том, какая вода обладает целебными свойствами и какими.
1.1.1 Морская вода
Поскольку в морской воде растворено много примесей: калий и магний, марганец и мышьяк, определенное количество драгоценных металлов, а также радий и уран и многие другие компоненты, то во время купания все эти вещества благотворно влияют на организм человека, действуя на нервные окончания через поры в коже.
Имеют значение и температура морской воды, ее плотность, сила удара волны, осуществляющей своеобразный массаж тела. Поэтому любые передвижения в воде: игра в мяч, плавание или ныряние хорошо тренируют мышцы, сердце и легкие. К тому же купание в морской воде способствует закаливанию организма человека, повышению его сопротивляемости простудным заболеваниям.
Драгомирецкий Ю.А. в своей книге «Акватерапия – целебные свойства воды» описывает более 200 различных гидротерапевтических и очистительных процедур, помогающих сохранить и укрепить здоровье с помощью морской воды.
Можно принимать морские ванны или обтираться морской водой. Такие процедуры можно делать не только летом, но и зимой. Они способствуют лечению бронхитов, подагр, радикулитов, нервной и сердечно-сосудистой систем, ожирения, болезни желудка, печени, почек и мочевого пузыря.
Купание в морской воде при температуре не ниже 17 градусов может стать превосходной возможностью для начала занятий по закаливанию организма.
После курса лечения (10-12 ванн) восстанавливается сон, уменьшаются боли в суставах и мышцах, прекращаются головные боли. Если болит горло, то купание в ванной можно дополнить полосканием горла стаканом «морской воды», добавив в него 3-5 капель йода.
1.1.2 Серебряная вода
Современное изучение целебных свойств серебряной («волшебной») воды началось в конце XIX века, когда всемирно известный врач Бенье Креде доложил о хороших результатах лечения септической инфекции ионами серебра. Эффект уничтожения бактерий препаратами серебра чрезвычайно велик. Серебро — микроэлемент, необходимый для нормальной деятельности желез внутренней секреции, мозга, печени и костной ткани.
Способ обеззараживания воды электролитическим серебром был разработан известным ученым, академиком Украинской АН Л.А. Кульским еще в 1930 году. Он описал целебные свойства серебряной воды и методы ее использования в медицинской практике. Ученый доказал, что серебро в концентрации 0,1 — 0,2 мг/л подавляет и обеззараживает в течение часа микроорганизмы, вызывающие острые кишечные инфекции: возбудителей дизентерии, сальмонеллеза и энтеропатогенную кишечную палочку. Сейчас этот метод применяют в США, Франции, Чехии, Германии и других странах.
Врачи рекомендуют использовать серебряную воду для профилактики гриппа, ОРЗ, заболеваний желудочно-кишечного тракта, стоматитов, инфекционных заболеваний уха, горла, носа, цистита, воспаления глаз, трофических язвах, а также обработки ран и ожогов. Она дает хороший эффект при лечении бруцеллеза, бронхиальной астмы и ревматоидного артрита.
Самое интересное, что при употреблении серебра можно не бояться его передозировки. Этот металл абсолютно безвреден для печени и почек. Единственное, что отмечают медики у больных при повышенных концентрациях серебра в организме — это некоторое «посмугление» кожи, которая приобретает временами черноморский загар. При этом установлено, что этот феномен совершенно безвреден для человека и не оказывает токсического воздействия на организм.
1.1.3 Талая вода
Целебные свойства талой воды были замечены еще в глубокой древности. Ученые ведут постоянные наблюдения над свойствами талой воды. Московский ученый Драгомирецкий Ю.А. в своей книге «Акватерапия – целебные свойства воды» приводит такие сведения: «Замечено, что талая вода является сильным биостимулятором. Семена растений, замоченные в талой, а не в водопроводной воде, дают лучшие всходы. А если талую воду использовать для полива растений, то урожай будет вдвое большим, чем при использовании обычной воды». У сердечно-сосудистых больных в результате приема талой воды значительно снижается количество холестерина в крови и улучшается обмен веществ. К тому же талая вода — эффективное средство против патологической тучности. Она полезна также для спортсменов, особенно перенесших травмы, поскольку сокращает время для вхождения в форму.
Снеговая вода может иметь иногда преимущества перед талой водой, приготовленной изо льда. Такая вода содержит особенно мелкодисперсные примеси — мельчайшие пузырьки газов, она лишена солей и поэтому быстрее всасывается в организм.
У талой воды есть еще одно прекрасное свойство: она обладает значительной внутренней энергией. Как показывают исследования, колебания равновеликих молекул в ней совершаются на одной и той же волне, а не идут на самопогашение, как при ситуации разновеликих молекул. Получается так, что вместе с потреблением талой воды, мы потребляем ощутимую энергетическую поддержку.
Магнитная вода
Попытки применить магнит в лечебных целях уходят в седую старину. Древние врачеватели прикладывали магнитные бруски или пластинки к телу больного. Первые сведения о влиянии магнитных полей на биологические свойства воды были получены еще в 18 веке в ходе опытов, проведенных женевским физиком де Герсю. Затем французский врач Дюрвиль описал лечебное действие омагниченной воды на раны и язвы. В ходе опытов выяснилось, что воздействие на организм омагниченной воды оказывает такое же влияние, как и приложенный к нему магнит.
Оказалось, что при питье омагниченной воды увеличивается мочеотделение, снижается артериальное давление, изменяется фармакологическое действие ряда лекарств.
В настоящее время в клинике медицинского института г. Перми успешно используют магнитное поле как обезболивающий фактор и как средство, ускоряющее рубцевание ран и язв.
В то же время, сами того не замечая, мы все время ощущаем на себе воздействие омагниченной воды. Например, искупавшись в море или реке, мы чувствуем себя так, будто заново родились. Это оттого, что вода в открытых водоемах впитывает в себя магнетизм.
Влияние магнитного поля на состояние человека уже ни у кого не вызывает сомнений. В Японии, например, изобрели искусственные источники магнитного поля — приборы для магнитотерапии и омагничивания воды. Современными исследованиями установлено много общих свойств между талой (структурированной) и омагниченной водой.
Отсюда вывод напрашивается сам собой: слабоомагниченная вода — это ничто иное, как живая природная вода, хранящая энергию Солнца и Земли.
1.1.5 Минеральная вода
В древнейших книгах есть сведения, что еще четыре тысячи лет назад больных лечили в купелях при храмах. Греческие жрецы строго охраняли свои тайны от непосвященных, оберегая целебную силу минеральной воды. Вблизи источников под их руководством трудом рабов возводились храмы Эскулапа, приобретавшие славу священных мест. О целебных свойствах минеральной воды знали также галлы.
В воде, взятой из любого природного источника, всегда содержатся растворенные вещества. Путешествуя в подземных лабиринтах и встречая на своем пути различные горные породы и минералы, вода растворяет их, формируя свой химический состав. Обогатившись различными элементами или их соединениями, она превращается иногда в настоящий «эликсир здоровья». Например, известные ессентукские источники богаты содой и минеральными солями, подземные воды в Цхалтубо — радиоактивным газом радоном, а пятигорские и мацестинские — сероводородом.
Из минеральных вод наиболее ценные с биологической точки зрения — углекислые. Под их воздействием расширяются капилляры кожного покрова, и кровь равномерно перераспределяется в организме, не требуя дополнительных усилий со стороны сердца. Благодаря углекислоте нормализуется кровообращение, улучшаются обменные процессы в мышце сердца, повышается ее работоспособность. Таким образом, становится понятным, почему врачи рекомендуют углекислые ванны при некоторых сердечно-сосудистых заболеваниях. Действие углекислоты положительно сказывается на всех показателях кровообращения и дыхания.
Некоторые специалисты полагали, что целительные свойства минеральной воды определяются ее химическим составом, т.е. теми солями, которые в ней растворены. Такой подход предполагает возможность искусственного приготовления целебной минеральной воды. Пользуясь современной аппаратурой, ученые установили точный химический состав воды и путем синтеза приготовили искусственную минеральную воду. Воду то получили, но без целебных свойств. Очевидно, дело не только и не столько в растворенных веществах, сколько в способности воды накапливать информацию, т.е. запоминать. Вырываясь с больших глубин (800 метров и глубже), подвергаясь воздействию высоких температур и высоких давлений, вода прошла пока еще неведомую нам физико-химическую и информационную обработку. Вот ее то пока и не удается восстановить ученым в своих лабораториях.
По структурному содержанию конкуренцию минеральной воде может составить, пожалуй, лишь талая вода. Но у минеральной воды энергетический уровень значительно выше, чем у талой воды. Если талая вода довольно быстро утрачивает приобретенную энергетическую добавку, то в минеральной воде сохранить ее, по-видимому, помогают растворенные соли.
Минеральную воду можно разделить на три категории: столовую, столово-лечебную и лечебную. Степень минерализации столовой воды может быть от 0,3 до 1,2 г на литр (она указана на бутылке).
Целебные свойства минеральной воде обеспечивают присутствующие в ней минеральные соли, биологически активные вещества и газ.
Такие воды как нарзан и боржоми, обладая щелочной реакцией, нормализуют моторную и секреторную функции желудочно-кишечного тракта, уменьшают диспепсические расстройства, нормализуют работу мочеполовых органов. При пониженной кислотности желудочного сока и застое желчи в желчном пузыре полезна минеральная вода с содержанием иона хлора, если в воде есть кремниевая кислота, то она оказывает болеутоляющий, антитоксический и противовоспалительный эффекты.
Для лечения атеросклероза наиболее эффективны йодистые минеральные воды. При малокровии и заболеваниях крови полезно принимать железистые минеральные воды, которые стимулируют образование крови.
удивительная Способность воды воспринимать информацию
С древности люди пытались проникнуть в секрет уникальных свойств воды. И хотя вода оставалась необъяснимой, непредсказуемой, загадочной, человек всегда ощущал неразрывную связь с этой стихией, интуитивно чувствуя, что может вступить с нею в контакт, быть выслушанным и понятым. Однако только в последнее время некоторым ученым стали очевидны причины, по которым люди стремятся общаться с водой, она, как живое существо, обладает памятью. Вода воспринимает, запоминает и как будто понимает любое оказываемое на нее воздействие физическое или мысленное.
В нескольких странах были одновременно проведены интересные эксперименты, подтвердившие, что вода как находящаяся в реках, озерах, морях, так и содержащаяся во всех живых организмах, действительно способна воспринимать, копировать, сохранять и передавать информацию, даже такую тонкую, как человеческая мысль, слово и эмоция.
Убедительные доказательства информационных свойств воды были найдены японским исследователем Масару Емото, который посвятил этой теме более двадцати лет. Изучая кристаллы воды, которые он получает в своей лаборатории, фотографирует, а затем анализирует снимки под микроскопом с увеличением в несколько сотен раз, Емото пришел к сенсационному открытию.
Суть своих экспериментов и сделанного на их основе открытия японский ученый раскрыл на встрече с польскими исследователями и журналистами, состоявшейся 16 марта 2004 года в конференц-зале Института геологии в Варшаве.
Исследуя обычную дистиллированную воду, Масару Емото обнаружил, что форма образующихся из нее кристаллов может отличаться большим разнообразием, а их внешний вид зависит от характера информационного воздействия, оказанного на воду до начала ее кристаллизации.
Основой структуры кристаллов воды — хорошо известных снежинок — является шестиугольник, именно с его формирования и начинается кристаллизация. А вокруг этого шестиугольника могут возникать украшающие его орнаменты. Вид этих украшений, так же, как и цвет кристалла, определяется информацией, предварительно воспринятой водой. Оптимальной для образования кристаллов воды оказалась температура, равная -5ºС. Именно такой «легкий морозец» и поддерживает в своей лаборатории японский исследователь, по крайней мере, в период проведения экспериментов.
Отправным моментом для исследований Масару Емото стали работы американского биохимика доктора Ли Лорензена, который в конце 80-х годов XX века впервые в мире доказал, что вода накапливает и сохраняет сообщаемую ей информацию. Емото стал сотрудничать с Лорензеном, но пошел еще дальше и решил попытаться получить визуальное подтверждение неожиданного свойства воды, обнаруженного американским ученым.
Его поиски увенчались успехом, а результаты превзошли все ожидания. Оказалось, что кристаллы воды, к которой до начала кристаллизации «обратились» с такими словами, как «доброта», «любовь», «ангел», «благодарность», имели правильную структуру, симметричную форму и были украшены сложным, красивым орнаментом.
Но если воде были сообщенные слова: «зло», «ненависть», «злоба», то кристаллы получались мелкими, деформированными, уродливыми на вид. При этом не имело значения, произносились ли слова вслух или записывались на бумажку, приклеенную к емкости с водой. Если же воде не сказать ничего, образуются кристаллы правильной формы, практически без всяких украшений. Причем такая зависимость подтверждена многочисленными экспериментами и тысячами фотоснимков.
Воде не важно, на каком языке с ней общаются, она понимает любую речь. Более того, опыты показали, что не играет роли и расстояние. Так, Масару Емото посылал «чистые мысли» воде, находящейся в его лаборатории в Токио, а сам был в это время в Мельбурне. Вода эти мысли восприняла мгновенно и отреагировала арией великолепных кристаллов.
Таким образом, в очередной раз подтвердилась гипотеза о том, что пространство и время не являются преградой для передачи информации.
В ходе дальнейших экспериментов выяснилось, что вода способна воспринимать и отображать такие человеческие эмоции, как страх, боль, страдание. Об этом убедительно свидетельствуют фотографии кристаллов, сделанные после катастрофического землетрясения 1995 года в городе Кобе. Когда сразу же после этой трагедии сфотографировали кристаллы, образовавшиеся из воды, взятой из местного водопровода, они были деформированными и уродливыми, словно их исказили воспринятые водой страх, паника и страдания, испытываемые людьми сразу после землетрясения. А когда получили кристаллы из воды, взятой из того же водопровода, но три месяца спустя, они уже имели правильную форму и выглядели гораздо привлекательнее. Дело в том, что в течение этого времени в Кобе поступала помощь из многих стран мира, жители ощущали сочувствие и симпатию большинства населения Земли, и их моральное состояние заметно улучшилось.
Реагирует вода и на музыку. «Прослушав» сочинения Бетховена, «Аве Марию» Шуберта или «Свадебный марш» Мендельсона, она образует кристаллы фантастической красоты. Кристаллы воды, которой сыграли «Танец маленьких лебедей» из балета Чайковского «Лебединое озеро», напоминали, по словам Емото, силуэты этих грациозных и величественных птиц.
А когда воде сообщили, названия пяти основных мировых религий — христианство, буддизм, индуизм, ислам, и иудаизм, из нее образовался пятиугольный кристалл и в нем просматривались контуры человеческого лица.
Результаты своих исследований Масару Емото изложил в книге «Послания, исходящие от воды», опубликованной в 2002 году, которая за прошедшее с тех пор время буквально покорила мир и была переведена на десятки языков.
В России исследованиями влияния мыслей человека на протекание процессов, изменяющих информационные свойства воды, начали заниматься в 90-х годах прошлого столетия в московском НИИ традиционных методов лечения Минздрава России. Ими руководил доктор биологических наук Зенин С.В. В ходе многочисленных экспериментов группы Зенина оказалось, что огромное значение для свойств воды имеет ее структура, способ организации молекул, образующих устойчивые группы жидких кристаллов. Они являются своеобразными ячейками памяти воды. Именно поэтому ее структура ответственна за запоминание и передачу биологической информации.
В 1996 году возглавляемая им группа создала и запатентовала устройство по регистрации изменения электрической проводимости водной среды в зависимости от вида воздействующих мысленных установок. С его помощью удалось выяснить, что при мысленных установках на «излечение» проводимость воды возрастала, а при смене установок на «подавление» — уменьшалась.
Не менее любопытные результаты были получены в Санкт-Петербурге в лаборатории, руководимой доктором технических наук, президентом Международного союза медицинской и прикладной биоэлектроники Коротковым К.С. В последние годы там проводились эксперименты по воздействию на воду человеческих эмоций.
В одном из опытов группу людей попросили спроецировать на колбы с водой поочередно сначала положительные эмоции любви, нежности, заботы, а затем отрицательные чувства страха, боли, горечи, ненависти. Затем были произведены измерения с помощью специально разработанного прибора, действие которого основано на эффекте Кирлиана: все, что помещается в сильное электромагнитное поле, начинает испускать свет.
Таким образом, в различных образцах стали видны структурные изменения воды, соответствующие характеру воздействий позитивных или негативных. Ругань и проклятия действовали на воду подобно ядам.
Юрий Исаевич Наберухин, доктор химических наук, профессор Новосибирского государственного университета, специалист в области спектроскопии воды и водных растворов в настоящее время занимается компьютерным моделированием неупорядоченных конденсированных сред (жидкостей и аморфных твердых тел, в частности воды). Автор более 100 научных работ и четырех монографий, в своей книге «Загадки воды» Наберухин Ю.И. говорит о том, что чистая по своему химическому составу вода может обладать громадной биологической активностью. При многократных разведениях память о химической структуре растворенного вещества сохраняется. Передача биологической информации осуществляется за счет того, что она «запечатлевается» в структуре воды.
Практическое значение исследований, проведенных в Москве, Санкт-Петербурге, Новосибирске и Японии, трудно переоценить, если вспомнить, что человек более чем наполовину состоит из воды. И, следовательно, вода, находящаяся в организме, запоминает все наши повседневные мысли, чувства, эмоции. И если они положительны — мы не болеем, у нас отличное самочувствие, тогда как отрицательные мысли и эмоции, являющиеся, в сущности, вибрациями с определенными параметрами, передаются «нашей» воде и отрицательно влияют на все протекающие в организме процессы. Из этого следует, как много в нашей судьбе зависит от нас самих, от наших мыслей.
2. Опытные исследования физических свойств воды
2.1. Превращения воды
2.1.1. Расширение и сжатие воды
Рисунок № 1
Опыт показал, что при нагревании вода расширяется, при охлаждении сжимается.
2.1.2. Вода исчезает
Рисунок № 2
Опыт показал, что вода превращается в водяной пар.
2.1.3. Вода возвращается в жидкость
Р
исунок № 3
Опыт показал, что водяной пар при соприкосновении с холодной крышкой снова превращается в жидкость – конденсируется.
2
.1.4.Аномальные явления воды
Рисунок №4
Опыт показал, что при замерзании вода расширяется.
2
.1.5. Только ли тепло может растопить лед?
Рисунок № 5
Опыт показал, что не только тепло может растопить лед, но и когда нитку на льду присыпать поваренной солью, образуется охлаждающая смесь, и нитка примерзает к льдинке.
2.1.6. Бумажная кастрюля
Р
исунок № 6
Опыт показал, что удельная теплоёмкость и удельная теплота парообразования у воды велики, поэтому не происходит возгорание бумаги.
2.1.7. Несгораемый платок
Р
исунок № 7
Опыт показал, что удельная теплота парообразования воды велика. И количество теплоты, выделившееся при сгорании спирта не достаточно для полного превращения воды в пар. Платок сохраняется.
2.2.Давление воды.
2.2.1. Как движется вода?
Рисунок № 8
Опыт показал, что вода создаёт давление, чем больше высота столба жидкости, тем больше давление воды.
2.2.2. Самый простой фонтан
Р
исунок № 9
Под действием давления воды, струя воды устремилась вверх. Чем выше уровень воронки, тем сильнее бьёт фонтан.
2.3.Поверхностное натяжение воды, капиллярность, смачивание.
2.3.1. Плавающая иголка
Р
исунок № 10
Этот опыт – пример проявления поверхностного натяжения воды. Молекулы на поверхности воды, не имея над собой других молекул, связаны друг с другом значительно крепче и образуют пленку, способную выдержать вес легкого тела.
2
.3.2. Кувшинка
Рисунок № 11
Опыт показал, что вода смачивает бумагу, а также в силу капиллярности проникает в самые маленькие пустые пространства между волокнами бумаги и заполняет их. Бумага набухает, сгибы на ней распрямляются, и цветок распускается
2
.3.3. Удерживаем воду
Рисунок № 12
Платок хорошо смачивается водой. Вода заполняет пространства между волокнами ткани и благодаря поверхностному натяжению создаёт непроходимый барьер для воды.
2.3.4. Вода и мыло
Рисунок № 13
Опыты показали, что силу поверхностного натяжения можно уменьшить с помощью мыла.
Рисунок № 14
2.4. Плавание тел
2
.4.1. Извержение вулкана
Рисунок № 15
Опыт показал, что горячая вода менее плотная, чем холодная, она легче и поднимается вверх в окружающей холодной воде. Как только вода остынет, она смешается с остальной водой.
2.4.2. Тонет или не тонет
Рисунок № 16
Опыт показал, что плавучесть тела зависит не только от плотности, но и от формы тела. Пластилиновая лодочка вытесняет воду не только своим телом, но и своими пустотами. Это приводит к тому, что средняя плотность тела оказывается меньше плотности воды.
2
.4.3. Три этажа
Рисунок № 17
Опыт показал, что вещества, менее плотные, чем вода, плавают на ее поверхности
2
.4.4. Яйцо в соленой воде
Рисунок № 18
Яйцо плотнее, чем вода, поэтому оно тонет. Но солёная вода плотнее пресной, поэтому яйцо всплывает. В последнем случае яйцо расположилось под пресной водой, но на поверхности солёной.
2
.4.5. Ныряющий изюм
Рисунок № 19
При взаимодействии уксуса с пищевой содой образуется углекислый газ. Пузырьки газа прилипают к изюминам, и по закону Архимеда всплывают вверх.
Вода: физические и химические свойства
Не обращали ли вы внимание на то, что все или почти все происходящее в мире вокруг нас, так или иначе связано с водой? Вода — это гидросфера Земли: ее океаны, реки, озера. Три процента всей массы воды на планете содержится в атмосфере. При извержениях из земных глубин вырываются водяные пары…
Вода есть не только на Земле. Недавно в нашей галактике обнаружили огромные скопления водяных паров — настоящие космические облака, размеры которых достигают сотен миллионов километров. Вода входит в состав комет. Следы ее найдены в атмосфере Марса и некоторых звезд…
Однако самое главное — это то, что вода связана с существованием жизни. Колыбелью жизни, ее первичных форм, по-видимому, был океан. Дальнейший ход биологической эволюции тесно связан с превращениями, идущими в водной среде. Удаление воды означает гибель либо прекращение процессов обмена. Высушенные семена растений могут сохраняться тысячелетиями, но в таком состоянии они не проявляют признаков жизни. Но стоит их смочить, и огонек жизни делается заметным — начинается прорастание, и жизненные процессы возобновляются.
Планеты, где, по всем данным, нет воды,— безжизненны. Если можно говорить о каких-то формах жизни на других космических телах, то лишь в том случае, если там будет обнаружена вода, именно вода, а не кислород, так как нам известны формы жизни, не требующие кислорода, но не известны ее «сухие» формы. Чем замечательна вода? Почему она играет такую важную роль во всем на нашей планете? (А еще вода обладает целительными свойствами для человеческого организма, такая к примеру минеральная вода, имеющая в своем составе некоторые полезные минералы).
Химические свойства воды
После, того, как Менделеев сформулировал свой периодический закон, стало невозможным порознь рассматривать свойства простых веществ. Таблица Менделеева связала различные вещества одной общей закономерностью. Эта закономерность проявляет себя во множестве частных связей. Например, свойства водородных соединений ряда металлоидных элементов, образующих вертикальные столбцы, в таблице Менделеева, изменяются с ростом массы атома. Можно четко проследить эти изменения: прочность соединений убывает, плотность увеличивается, повышается температура кипения и плавления и т. д.
Вода — это водородное соединение кислорода. Кислород — элемент шестой группы таблицы Менделеева. В той же группе (и подгруппе) находятся сера, селен, теллур. Если сравнить свойства их соединений с водородом (гидридов), то увидим, что температура кипения понижается при переходе от теллура к сере. Сероводород кипит уже при минус 60 градусах. Значит, соединение кислорода с водородом при нормальных условиях — при нуле градусов — должно быть газом. Вода — газ! Это и было бы нормой, но, к счастью для нас, вода почему-то отклоняется от правила.
Такая странность воды не единственна. Вода необычна и в других отношениях. У нее очень велика теплота испарения, теплоемкость, водяной пар при быстром расширении конденсируется, вместо того чтобы переходить в состояние ненасыщенного пара, плотность воды увеличивается при изменении температуры от 0° до +4°С, а затем снова падает; затвердевая, вода расширяется.
Перечень странностей воды не исчерпан, но для нас достаточно и этого. Подумаем о том, что значат для жизни удивительные ее свойства. Попробуем представить себе Землю и жизнь на ней при условии, что вода — вещество «нормальное».
Нет морей и океанов, нет рек и озер, все растения и животные обезвожены, а атмосфера насыщена газом Н20.
Предположим, что ненормально высокая теплоемкость воды тоже понизилась — например, в 20—30 раз. Тогда воды океанов и морей уже не смогут накапливать достаточное количество теплоты — они станут быстро нагреваться летом и сильно охлаждаться зимой. Резкие колебания температуры вызовут растрескивание горных пород, изменят рельеф земной поверхности. Но растрескивание пород — результат расширения воды при замерзании, это ведь тоже аномалия! Допустим, что нет и ее, — горным породам от этого, конечно, будет легче, но лед начнет образовываться на дне водоемов, и они станут промерзать полностью. Следствием окажется гибель и рыбы, и всей жизни в реках и озерах.
Невеселая получается картина, не правда ли? Но и это не все. Есть у воды еще одно удивительное качество: в ней резко ослабляется сила взаимодействия между электрическими зарядами. Например, если заряженные тела перенести из воздуха в воду, эта сила упадет в 80 раз!
А результат! Какие грандиозные последствия имеет такое, казалось бы, сугубо специальное обстоятельство.
Ослабляя взаимодействие электрических зарядов, вода поддерживает растворенные в ней соли, кислоты и основания в ионизированном состоянии. А быстро протекающие химические реакции чаще всего совершаются как раз между ионами.
Вот мы и добрались до самых глубин жизни; ведь ионы — это одна из главных сил в жизненных процессах. Ионы регулируют действие множества биологических катализаторов — ферментов, без которых немыслима жизнь; перемещение ионов через биологические мембраны обуславливает передачу нервного возбуждения; концентрация ионов в почве дает возможность нормального роста растений и т. д. Вывод: вода не могла бы стать средой для жизни, если бы она не вызывала образования ионов.
Жизнь зародилась в воде; вполне естественно, что вся химия жизни неразрывно связана с маленькими молекулами Н20; все формы, все типы реакций, направление развития и формирование функций живых систем так же, как и величественные картины неживой природы, несут на себе отпечаток свойств и деятельности молекул воды!
Молекула воды
Странности воды, сейчас изучены достаточно основательно. Главный секрет таится в конструкции молекулы воды. В этой молекуле атом кислорода двумя отдельными связями сцеплен с двумя атомами водорода. Связи мы можем изобразить в виде палочек, и можно представить себе много способов их взаимного расположения.
На самом же деле в молекуле воды реализован только один — палочки расположены в одной плоскости с углом между ними примерно в 105°. На скрещении палочек-связей находится атом кислорода, на противоположных концах палочек помещаются атомы водорода. Но палочки, хоть они и разведены друг от друга, все-таки направлены в одну сторону. И, значит, у молекулы воды одна сторона — кислородная, а другая — водородная. В этом все дело.
Но расскажем сначала о некоторых тонкостях в том, как возникает эта конструкция. Читатель, которого отпугивают сложности атомной физики, может пропустить следующую главу.
Электронные тонкости
Образуя молекулу воды, атомы кислорода и водорода схватываются, сцепляются своими электронными оболочками. У атома кислорода есть так называемые р-электроны — их четыре и распределение их плотности можно представить себе в виде фигур (объемных тел), напоминающих гантели. Кроме того, у кислорода есть еще два электрона, расположенных так, что распределение их заряда имеет сферическую симметрию (электроны э-типа).
Атомы водорода имеют электроны, плотность которых тоже распределена сферически. Для образования связи нужно, чтобы электронные облака атомов кислорода и водорода перекрылись, то есть их электроны стали общими, как на этом рисунке.
Перекрытие и происходит между гантелеобразными облаками р-электронов кислорода и сферическими облаками атомов водорода. На образование связи нужно два электрона — по одному, от каждого атома; эта пара электронов и образует общее зарядовое облако. После образования связей у кислорода остается два электрона р-типа и два э-типа, которые не были использованы. Какова роль этих неиспользованных электронов?
Две связи в молекуле воды, две палочки Н = 0 имеют на одном конце положительный, а на другом — кислородном конце — отрицательный заряд. Такая конструкция называется диполем. Если бы палочки-диполи были расположены на одной прямой — как продолжение друг друга с атомом кислорода посредине, они взаимно компенсировались бы, и общий дипольный момент молекулы был бы равен нулю.
Однако этого нет. Палочки-связи разведены на угол в 105°, и такая конструкция молекулы электрически активна. Два электрона в-типа влияют на величину угла между связями. Но дипольный момент молекулы воды очень велик и, чтобы создать его, одной изогнутости молекулы мало. В дело вступают два других неиспользованных для связей р-электрона атома кислорода. Вращаясь вокруг своего ядра, они на кислородном, «боку» молекулы создают дополнительный отрицательный заряд.
Физические свойства воды
Итак, природа «согнула» молекулу воды и сделала ее активным диполем. Диполи же, как известно, энергично притягиваются друг к другу. Но чем отличается жидкость от газа? Прежде всего, именно силой взаимодействия между молекулами. Чем сильнее сцепляются друг с другом диполи-молекулы, тем большую надо затратить работу, чтобы их разделить,— тем выше теплота испарения…
При испарении вода должна поглощать огромную энергию. При испарении! А значит, в обычных условиях она должна быть именно жидкостью: ведь дополнительная гигантская энергия в обычных условиях отсутствует.
А у молекул сероводорода — для сравнения — дипольный момент вдвое меньше, сила притяжения между ними слабее, и в обычных условиях сероводород — газ.
Но дело не только в величине дипольного момента. Молекулы воды соединяются друг с другом еще и так называемыми водородными связями. Что это такое? Ядра водорода в молекуле воды «тянутся» не только к «своему» кислороду, но и к электронам кислорода у соседей. Конечно, к своему «хозяину» — кислороду протон притягивается сильнее, чем к «чужаку». Поэтому водородные связи не строго симметричны.
У других гидридов они тоже есть. Но они слабы, так как расстояния между молекулами, например, сероводорода больше (связи длиннее), чем у воды. Большое число электронных оболочек не позволяет молекулам других гидридов сблизиться, а значит, не позволяет водородным связям проявить себя. А в молекулах воды электронных оболочек немного, и водородные связи очень энергичны в своей совокупности.
Молекулы воды крепко сцеплены друг с другом; так крепко, что в ней рождается огромное внутреннее давление: приблизительно 20 000 атмосфер. С такой силой слои молекул воды прижаты друг к другу; не удивительно, что это практически несжимаемая жидкость.
Вода: порядок или хаос? Структура воды.
Но если диполи так крепко сцепляются друг с другом, то как же выглядит структура воды, да и можно ли вообще говорить о ней? Расположены ли диполи в воде беспорядочно или в их пространственном размещении есть какая-то правильность? На первый взгляд, ответ очевиден. Ведь молекулы движутся и притом хаотически, о каком же регулярном расположении вообще идет речь? Однако данные, полученные с помощью рентгенографического анализа, говорят о другом: в воде есть явные признаки упорядоченной структуры.
Предположим, что все движения молекул воды на мгновение прекратились, и допустим, что мы в состоянии видеть каждую молекулу. Тогда, взглянув на воду, мы обнаружим в ней так называемый ближний порядок. В непосредственной близости от выбранной нами молекулы воды другие молекулы расположены по определенному закону.
Особенность жидкостей не в том, что в них нет упорядоченности, а в том, что этот порядок не выдерживается строго во времени и в пространстве. Если отодвинуться подальше от избранной молекулы, то мы попадем в область, где порядок уже нарушен. А если подождать некоторое время, то окажется, что и ближние молекулы обмениваются местами. В воде нет хаоса, но порядок вновь и вновь нарушается, а затем восстанавливается. Огромные силы внутреннего давления, сжимающие воду, ограничивают возможности быстрых перемещений — одна молекула «топчется» около другой, пока ей удастся покинуть свое место и сделать более или менее значительный скачок в сторону. Правда, продолжительность «топтания» велика лишь по молекулярным масштабам.
Значит, и у воды есть внутренняя структура. Самое же поразительное в ней то, что она очень похожа на структуру льда. Лед построен так. Каждая молекула воды в нем окружена четырьмя соседними.
Молекула льда.
В этой кристаллической решетке есть полости — пустоты. Такие же пустоты сохраняются и в структуре воды. Как мы увидим далее, они играют важную роль — это молекулярные «ловушки», куда попадают молекулы различных веществ, ионы, а иногда и молекулы самой воды. В кристалле льда такая структура распространяется на весь кристалл. В жидкой воде, охлажденной до температуры, близкой к нулю, тоже есть подобие правильного расположения молекул, но уже с некоторыми нарушениями порядка, или, как говорят, с «дефектами»: то одна молекула попадет в полость, то обнаружится недостача молекулы в окружении этой полости и т. д.
Значит, чем больше порядка в расположении молекул воды, тем больше «пустот» и меньше плотность. Когда же молекулы расположены беспорядочно, плотность увеличивается — ведь все большее число молекул попадает в «пустоты». Понятно, почему при плавлении льда наблюдается сжатие, а замерзание жидкой воды, наоборот, сопровождается расширением.
Сокращается объем воды и при нагревании ее от 0° до +4°: в этом температурном интервале молекулы воды интенсивнее всего внедряются в пустоты решетки, и плотность возрастает.
Чем выше температура воды, тем, конечно, меньше порядка в расположении молекул, и тем менее структура жидкой воды похожа на структуру льда. Но есть условия, в которых жидкая вода особенно похожа на лед, — условия, когда молекулы воды снова приобретают упорядоченное расположение. Как ни странно, но, по-видимому, этот эффект вполне четко выражен в биологических системах — около белковых молекул, на поверхности клеточных мембран и т. д.
Наше тело на 70 процентов состоит из воды; неужели мы на 70 процентов состоим изо льда? Не совсем так, но все-таки очень похоже на это…
Чисто физические исследования показали: тонкие слои воды, зажатые между двумя пластинками из слюды, проявляют свойства, характерные не для жидкой воды, а для льда! На поверхности различных твердых тел вода, по последним данным, тоже структурно упорядочена и имеет сходство со льдом.
Во-вторых. Активность молекул воды и их стремление «организоваться» находит своеобразное выражение во взаимодействиях между водой и различными веществами. Когда в воду попадает кристалл соли, молекулы воды немедленно притягиваются к ионам на поверхности кристалла. Энергия их взаимодействия так велика, что ионы покидают свои места в кристаллической решетке и уходят в водную среду, окруженные оболочками из молекул воды: соль начинает растворяться.
Водяная «шуба» состоит не из одного слоя, но чем дальше от иона, тем слабее связь, и ее границы довольно «пушисты» и расплывчаты — по-видимому, лишь 4—6 молекул воды вполне связаны с ионом.
Так же, как и вокруг ионов, молекулы воды могут ориентироваться, например, около молекулы метана — тогда возникает гидрат этого газа. Грозди молекул воды в гидрате получили название «айсбергов» — состояние воды в них напоминает строение кристаллов льда.
В трубопроводах газовых сетей не раз находили скопления снега и льда, причем они оставались твердыми и при температуре +20°. Это и были «айсберги», выросшие вокруг молекул метана.
Затравкой для таких соединений может быть не только метан: этан, этилен, хлор, двуокись серы и даже инертные газы (аргон, криптон) образуют подобные гидраты. Загадка «айсбергов» разъясняется неожиданно просто. Молекулы газов попадают в пустоты между молекулами воды. Застряв в них, они упорядочивают окружающие молекулы воды. Предполагают, что в гидратах молекулы воды расположены по углам пятиугольников, а из пятиугольников строятся сложные многогранники — пространство внутри них заполнено газом. Если газ удалить, устойчивость всего каркаса уменьшается, и он начинает разрушаться и перестраиваться. Некоторые исследователи считают, что точно так же, окружая углеводородные группы, входящие в состав белков, вода стабилизует молекулы белка. А это означает, что формы, в которых белковые молекулы находятся и действуют в организмах, в значительной степени связаны с влиянием воды.
Вода в тканях животных и растений не представляет собой хаоса; молекулы ее расположены относительно упорядоченно, и действительно можно сказать, что у воды в нашем организме есть определенное сходство со льдом.
Активность и холод
Оледенение, замерзание, застывание — слова, с которыми у нас прочно связано представление о понижении активности; жизнь замирает при понижении температуры, скорость химических реакций как будто тоже уменьшается. Но дело не так просто. Вода и лед и здесь обнаруживают своеобразие.
Вода, как известно из школьного курса химии, плохой электролит. Лишь небольшая доля ее молекул диссоциирует на ионы Н+ и ОН-. Лед диссоциирован еще менее, и, если литр воды замерзнет, в нем останется только тысячная доля от того количества ионов, которое было в жидкой воде.
Но поразительно: резкое уменьшение концентрации ионов очень слабо отражается на электропроводности. У льда она всего в три раза меньше, чем у воды, — в три, а не в тысячу! Между тем электрические заряды переносятся именно ионами Н+ и ОН-, и следовало бы ожидать, что уменьшение их числа скажется на способности проводить ток.
Однако электропроводность зависит не только от числа ионов, но и от их подвижности. В кристаллической решетке льда ионы становятся «стремительными» — и эта стремительность возмещает резкое падение их числа.
Впрочем, «стремительность» — это грубо метафорическое выражение. Дело не только в том, что ионы ускоряют свой бег — дело в том, что во льду возникает особый механизм, который организует движение ионов. Механизм этот называют цепным, или эстафетным. Вот как он действует. Ион водорода приближается к молекуле воды, возникает водородная связь. Затем эта связь переходит в обычную химическую, а другой ион водорода, ранее принадлежавший молекуле, отщепляется. Он присоединяется к следующей молекуле, от которой так же одновременно отделится новый ион водорода, и, двигаясь по цепи, процесс будет продолжаться.
Быстрота, с которой он совершится, зависит не от индивидуальной скорости ионов, а от быстроты обмена ими между молекулами воды. В кристалле льда царит внутренний порядок, и обмен идет легко. А в жидкой воде, то и дело, натыкаясь на зоны нарушений или на пустоты, ионы будут терять скорость своего бега вдоль по цепочке молекул. Итак, во льду на самом деле, оказывается, «двигаться» легче, чем в воде, поэтому лед и ускоряет многие реакции. Лед — настоящий катализатор!
Но ведь похожие на лед «айсберги» есть и в организмах, и в них, значит, тоже легче протекают различные реакции. Перенос ионов играет важную роль в действии ферментов и в работе белковых мембран различного типа — и в оболочке клетки, и в оболочке ее ядра, и в митохондриях (энергетических станциях клетки), и в рибосомах, где строятся новые молекулы белков, словом, повсюду. Поэтому вода не просто среда, это, по Сьент- Дьерди, — неотъемлемая часть живой машины.
Мы подошли к концу рассказа… Каков итог? Что же, вода и впрямь какое-то «ненормальное» вещество, на «ненормальных» свойствах которого (как физических, так и химических) держится привычная картина природы?
Нет, конечно. «Необычность» воды более чем обычна, она естественна. Она — свидетельство того, что при переходе от одного атома к другому в подгруппе периодической системы происходят изменения. Накапливаясь, эти изменения становятся все более ощутимыми, и вдруг резкий скачок.
Вернемся снова к диполям воды. Их тесно сцепляют друг с другом мощная электрическая активность и действие водородной связи.
У других элементов шестой группы очень велико экранирующее действие электронных облаков — водородная связь не может «пробиться» сквозь них. У теллура, и у селена, серы слишком много свободных, незанятых электронов. Окутанные ими, тяжелые молекулы гидридов слабо связаны друг с другом. И все они при нормальных условиях — газы.
Однако при движении от одного элемента группы к другому электронов в атомах становится все меньше, и у кислорода их уже так мало, что водородная связь начинает пробиваться, активно проявляя себя.
Так, порой медленно и постепенно, рассеиваются тучи, пока не разорвется серый пласт. И тут же блеснет луч солнца. И неожиданный скачок — из пасмурной погода стала ясной, все засияло другими красками.
Электронное «небо» при переходе к кислороду на самом деле проясняется, и в мире гидридов неожиданно наступает другая погода. Во всем блеске своих необычных свойств на сцене мира появляется Вода.
Автор: Л. Николаев.
Физические свойства воды
> Физические свойства воды
- Состояние (ст.усл.): жидкость
- Плотность: 0,9982 г/куб.см
- Динамическая вязкость (ст.усл.): 0,00101 Па•с (при 20°C)
- Кинематическая вязкость (ст.усл.): 0,01012 кв.см/с (при 20°C)
Термические свойства воды:
- Температура плавления: 0°C
- Температура кипения: 99,974°C
- Тройная точка: 0,01 °C, 611,73 Па
- Критическая точка: 374°C, 22,064 MПа
- Молярная теплоёмкость(ст.усл.): 75,37 Дж/(моль•К)
- Теплопроводность(ст.усл.): 0,56 Вт/(м•K)
Агрегатные состояния воды:
- Твёрдое — лёд.
- Жидкое — вода.
- Газообразное — водяной пар.
При атмосферном давлении вода замерзает (превращается в лёд) при температуре в 0°C и кипит (превращается в водяной пар) при температуре 100°C.
При снижении давления температура плавления воды медленно растёт, а температура кипения — падает.
При давлении в 611,73 Па (около 0,006 атм) температура кипения и плавления совпадает и становится равной 0,01°C. Такое давление и температура называются тройной точкой воды.
При более низком давлении вода не может находиться в жидком состоянии, и лёд превращается непосредственно в пар. Температура возгонки льда падает со снижением давления.
При росте давления температура кипения воды растёт, плотность водяного пара в точке кипения тоже растёт, а жидкой воды — падает.
При температуре 374°C (647 K) и давлении 22,064 МПа (218 атм) вода проходит критическую точку. В этой точке плотность и другие свойства жидкой и газообразной воды совпадают.
При более высоком давлении нет разницы между жидкой водой и водяным паром, следовательно, нет и кипения или испарения.
Так же возможны метастабильные состояния — пересыщенный пар, перегретая жидкость, переохлаждённая жидкость. Эти состояния могут существовать длительное время, однако они неустойчивы и при соприкосновении с более устойчивой фазой происходит переход. Например, нетрудно получить переохлаждённую жидкость, охладив чистую воду в чистом сосуде ниже 0°C, однако при появлении центра кристаллизации жидкая вода быстро превращается в лёд.
Вода обладает рядом необычных особенностей:
- При таянии льда, его плотность увеличивается (с 0,9 до 1 г/куб.см). Почти у всех остальных веществ при плавлении плотность уменьшается.
- При нагревании от 0°C до 4°C (точнее 3,98°C), вода сжимается. Благодаря этому могут жить рыбы в замерзающих водоёмах: когда температура падает ниже 4°C, более холодная вода, как менее плотная остаётся на поверхности и замерзает, а под льдом сохраняется положительная температура.
- Высокая температура и удельная теплота плавления (0°C и 333,55 кДж/кг), температура кипения (100°C) и удельная теплота парообразования (2250 КДж/кг), по сравнению с соединениями водорода с похожим молекулярным весом.
- Высокая теплоёмкость жидкой воды.
- Высокая вязкость.
- Высокое поверхностное натяжение.
- Отрицательный электрический потенциал поверхности воды.
Все эти особенности связаны с наличием водородных связей. Из-за большой разности электроотрицательностей атомов водорода и кислорода электронные облака сильно смещены в сторону кислорода. По причине этого, а также того, что ион водорода не имеет внутренних электронных слоев и обладает малыми размерами, он может проникать в электронную оболочку отрицательно поляризованного атома соседней молекулы. Благодаря этому, каждый атом кислорода притягивается к атомам водорода других молекул и наоборот. Каждая молекула воды может участвовать максимум в четырёх водородных связях: 2 атома водорода — каждый в одной, а атом кислорода — в двух; в таком состоянии молекулы находятся в кристалле льда. При таянии льда часть связей рвётся, что позволяет уложить молекулы воды плотнее; при нагревании воды связи продолжают рваться, и плотность её растёт, но при температуре выше 4°С этот эффект становится слабее, чем тепловое расширение. При испарении рвутся все оставшиеся связи. Разрыв связей требует много энергии, отсюда высокая температура и удельная теплота плавления и кипения и высокая теплоёмкость. Вязкость воды обусловлена тем, что водородные связи мешают молекулам воды двигаться с разными скоростями.
По сходным причинам вода является хорошим растворителем полярных веществ. Каждая молекула растворяемого вещества окружается молекулами воды, причём положительно заряженные участки молекулы растворяемого вещества притягивают атомы кислорода, а отрицательно заряженные — атомы водорода. Поскольку молекула воды мала по размерам, много молекул воды могут окружить каждую молекулу растворяемого вещества.
Это свойство воды используется живыми существами. В живой клетке и в межклеточном пространстве вступают во взаимодействие растворы различных веществ в воде. Вода необходима для жизни всех без исключения одноклеточных и многоклеточных живых существ на Земле.
Чистая (не содержащая примесей) вода — хороший изолятор. При нормальных условиях вода слабо диссоциирована и концентрация протонов (точнее, ионов гидроксония H3O+) и гидроксильных ионов HO — составляет 0,1 мкмоль/л. Но поскольку вода — хороший растворитель, в ней практически всегда растворены те или иные соли, то есть в воде присутствуют положительные и отрицательные ионы. Благодаря этому вода проводит электричество. По электропроводности воды можно определить её чистоту.
Вода имеет показатель преломления n=1,33 в оптическом диапазоне. Однако она сильно поглощает инфракрасное излучение, и поэтому водяной пар является основным естественным парниковым газом, отвечающим более чем за 60% парникового эффекта. Благодаря большому дипольному моменту молекул, вода также поглощает микроволновое излучение, на чём основан принцип действия микроволновой печи.
Понравилось? Поделись с друзьями!
Please enable JavaScript to view the comments powered by Disqus.blog comments powered by
Физические и химические свойства воды
Формула – H2O. Молярная масса – 18 г/моль. Может существовать в трех агрегатных состояниях – жидком (вода), твердом (лед) и газообразном (водяной пар).
Химические свойства воды
Вода – наиболее распространенный растворитель. В растворе воды существует равновесие, поэтому воду называют амфолитом:
H2O ↔ H+ + OH— ↔ H3O+ + OH—.
Под действием электрического тока вода разлагается на водород и кислород:
H2O = H2 + O2.
При комнатной температуре вода растворяет активные металлы с образованием щелочей, при этом также происходит выделение водорода:
2H2O + 2Na = 2NaOH + H2↑.
Вода способна взаимодействовать с фтором и межгалоидными соединениями, причем во втором случае реакция протекает при пониженных температурах:
2H2O + 2F2 = 4HF + O2↑.
3H2O +IF5 = 5HF + HIO3.
Соли, образованные слабым основанием и слабой кислотой, подвергаются гидролизу при растворении в воде:
Al2S3 + 6H2O = 2Al(OH)3↓ + 3H2S↑.
Вода способна растворять некоторые вещества металлы и неметаллы при нагревании:
4H2O + 3Fe = Fe3O4 + 4H2↑;
H2O + C ↔ CO + H2.
Вода, в присутствии серной кислоты, вступает в реакции взаимодействия (гидратации) с непредельными углеводородами – алкенами с образованием предельных одноатомных спиртов:
CH2 = CH2 + H2O → CH3-CH2-OH.
Физические свойства воды
Вода – прозрачная жидкость (н.у.). Дипольный момент – 1,84 Д (за счет сильного различия электроотрицательностей кислорода и водорода). Вода обладает самым высоким значением удельной теплоемкости среди всех веществ в жидком и твердом агрегатном состояних. Удельная теплота плавления воды – 333,25 кДж/кг (0 С), парообразования – 2250 кДж/кг. Вода способна растворять полярные вещества. Вода обладает высоким поверхностным натяжением и отрицательным электрическим потенциалом поверхности.
Получение воды
Воду получают по реакции нейтрализации, т.е. реакции взаимодействия между кислотами и щелочами:
H2SO4 + 2KOH = K2SO4 + H2O;
HNO3 + NH4OH = NH4NO3 + H2O;
2CH3COOH + Ba(OH)2 = (CH3COO)2Ba + H2O.
Один из способов получения воды – восстановление металлов водородом из их оксидов:
CuO + H2 = Cu + H2O.
Примеры решения задач
Урок по химии на тему «Физические и химические свойства воды. Применение воды». 8-й класс
Цель урока: сформировать у учащихся понятие о химических свойствах воды.
Предметная:
- создать условия для исследования и выявления химических свойств воды;
- способствовать осмыслению новых понятий “основания, гидроксильная группа”;
- способствовать развитию умения пользоваться опорными знаниями, закрепить умения и навыки химического эксперимента, умение работать с таблицами, учебником.
Метапредметная:
- способствовать формированию умения планировать свою деятельность для изучения различных сторон окружающей действительности, умения делать логические выводы из наблюдений по опыту;
- искать пути и средства осуществления целей.
Личностная:
- создание условий для формирования навыков сотрудничества, умения принимать мнения других;
- формирование навыков оценки и самооценки;
- сформировать понимание практической важности воды в жизни человека.
Задачи:
- Образовательные: Обобщить и расширить знания учащихся о воде, ее роли в живой и неживой природе, в жизни человека, о необходимости бережного отношения к воде.
- Развивающие: Продолжить формировать логическое мышление, умения наблюдать, анализировать и сравнивать, находить причинно-следственные связи, делать выводы, наблюдать за ходом эксперимента, осуществлять самоконтроль и взаимоконтроль.
- Воспитательные: Формировать научное мировоззрение учащихся; научить слушать учителя и своих одноклассников, быть внимательным к себе и окружающим, вести беседу.
Планируемые результаты: По окончанию урока учащиеся смогут:
Метапредметные: использовать свои знания и умения для изучения различных сторон окружающей действительности.
Предметные: иметь понятие о химических свойствах воды, писать их уравнения реакций, иметь понятия о гидроксидах, основаниях, щелочах, оксидах, кислотах, опыт проведения химического эксперимента.
Личностные: научаться управлять своей познавательной деятельностью, будут продолжать развивать в себе целеустремленность.
Формируемые химические знания, умения, навыки учащихся: систематизация знаний учащихся о распространенности воды в природе, физических и химических свойствах, областях применения воды, расширение знаний учащихся об экологических проблемах, связанных с очисткой воды.
Формируемые компетенции:
- учебно-познавательная компетенция: развитие умений сравнивать, анализировать, доказывать, составлять схемы на основе работы с текстом, быть способными решать следующие жизненно-практические задачи: умение давать оценку состояния окружающей среды, выдвижение своих идей по охране водных ресурсов родного края;
- информационная компетенция: развитие умения анализировать и отбирать необходимую информацию, умения готовить и делать сообщения, умения пользоваться Интернатом для поиска учебной информации;
- коммуникативная компетенция: развитие умений вести беседу, диалог, задавать вопросы.
Формы организации работы детей: групповая (просмотр презентации, видеоролика, решение задач), индивидуальная (беседа, работа с рабочей тетрадью, работа с книгой), проблемное обучение (решение проблемных вопросов), опережающее обучение.
Формы организации работы учителя: организует эмоциональный настрой учащихся, вводит детей в тему урока, активизация и обобщает ранее полученные знания, организует беседу по слайдам и опытам, анализирует и дополняет ответы детей, создает проблемные ситуации.
Основные виды деятельности учащихся.
1. Составлять уравнения реакций, характеризующих химические свойства воды.
2. Работа с книгой.
3. Анализ видеоролика.
4. Дидактические игры.
Используемые технологии обучения: проблемного обучение (решение проблемных вопросов), опережающее обучение, личностно-ориентированного обучения, критического мышления, здоровьесберегающая.
Используемое оборудование ИКТ: компьютер, экран, мультимедийный проектор, презентация к уроку, выполненная в программе PowerPoint, опорный конспект.
Ход урока
1. Организационный момент 1-2 мин.
2. Актуализация знаний (фронтальная беседа)
Здравствуйте. Хотите узнать, о чем мы сегодня с вами будем говорить? Тогда отгадайте загадку: слайд № 1.
Я и туча, и туман,
И ручей, и океан,
И летаю, и бегу,
И стеклянной быть могу!
Правильно, это вода.
Посмотрите ребята на экран. На экране слова аквариум, акватория, акваланг, акварель. Слайд № 2
Что общего в этих словах.
Ответы учащихся: слайд №2 корень аква.
Что означает слово аква?
Ответы учащихся: вода.
Сейчас мы продолжим говорить о воде, вспомним физические воды.
Слайд №3
«Вода… Ты не имеешь ни вкуса, ни цвета, ни запаха, тебя невозможно описать – тобой наслаждаешься, не ведая, что ты такое.
Ты не просто необходима для жизни, ты и есть сама жизнь. Ты божество, ты совершенство, ты самое большое богатство на свете» (Проблемный вопрос)
Такие слова написал о воде французский писатель Антуан де Сент-Экзюпери.
Слайд №4
- Без крыльев летят.
Без ног бегут, без паруса плывут. (Облака) - Приходил – стучал по крыше,
Ууходил – никто не слышал. (Дождь) - Растёт она вниз головою.
Не летом растет а зимою.
Но солнце её припечёт –
Заплачет она и умрет. (Сосулька)
Отгадав эти загадки мы назвали три агрегатных состояния воды.
(Газ, жидкость, лед)
А какими еще физическими свойствами обладает вода при нормальных условиях? Используя предыдущие высказывания, и свои знания обобщим физические свойства воды, работая с индивидуальной картой. Ответы проверим по слайду №5. 1-2 мин. (самопроверка)
Характеристика вещества | Физические свойства воды |
Агрегатное состояние | Жидкое |
Вкус | Без вкуса |
Цвет | Без цвета |
Запах | Без запаха |
Температура кипения | 100° С |
Температура замерзания | 0° С |
Плотность воды при t+4°С | 1г/см3 |
3. Фронтальный и индивидуальный опрос
Слайд №6
Вычислите массовые доли водорода и кислорода в воде в индивидуальной карте.
- Каков состав воды?
- Какими методами можно определить состав воды?
- Что такое анализ и синтез?
1. Вода в природе? Дополнить предыдущие ответы. Содержание воды в разных организмах.
2. Назовите способы очистки воды – отстаивание, фильтрование, обеззараживание (хлорирование, озонирование, ультрафиолетом), аэрация.
3. Чтобы очистить воду от примесей ее пропускают через решетки, направляют в отстойник, фильтруют. (Схема в учебнике)
4. Фильтром для очистки служит слой песка и гравия. Для обеззараживания питьевой воды применяют хлорирование (0,7 г хлора на 1т воды)
5. Метод хлорирования применяется и в нашем районе, хотя он устарел и экологически небезопасен для здоровья.
6. Хлорированная вода влияет, прежде всего, на органы пищеварения, печень, почки.
7. Причины загрязнения водоемов сточные воды, сбросы предприятий, с/х. Основная причина утечка нефти.
8. В чем заключается охрана природных ресурсов?
Охрана водных ресурсов. Сообщения учащихся
Сообщение. «Берегите воду!»
В конце ΧΙΧ в. горожанину хватало полтора ведра воды в сутки – и на мытье, и даже на тушение пожаров. Нынешняя норма – свыше 18 ведер, т.е. 220 л. На деле мы и в эту ному не укладываемся, расходуя 30-40 ведер на человека.
«Эталонное» 12-литровое ведро несильная струя воды заполняет за минуту. Вы простояли под душем 5 мин – 60 л. воды убежали в канализацию. Этого с лихвой хватит, чтобы аккуратно вымыть слона.
Струйкой толщиной со спичку литровая банка наполняется за 3 мин. Этот эксперимент позволяет установить, что за сутки из неисправного крана утекает минимум 500 л.
Существует мнение, что промышленность тратит львиную долю воды. На самом деле на выпуск 1 т стали уходит 150 м3, хлопчатобумажной ткани – 1000 м3, искусственного волокна – 3000 м3 водопроводной воды. Из воды, поступающей в Москву ежесуточно, заводы и фабрики забирают лишь четверть. Столько же идет в столовые, детские сады, больницы. Остальное – в жилые дома.
А ведь экономить воду без всякого гигиенического ущерба совсем не сложно. Скажем, зубы после чистки можно прополоскать из стакана, закрыв кран. Экономия – 5 л. воды за одну человеко — чистку. Во время бритья можно, вместо того чтобы открыть кран с горячей водой, налить, как в старину, воду из чайника в стакан, на бритье уйдет не 5-10 л., а всего 0,2, а бреющихся миллионы…
Хозяйки считают, что полоскать белье после стирки надо в проточной воде. Конечно, так белье выполаскивается быстрее, поскольку градиент концентрации стирального порошка на поверхности белья и омывающей его воде больше, чем в непроточной, а значит, и скорость диффузии больше. Но зато расход воды велик. Современные моющие средства вымываются из чистого белья и после того, как оно полежит в непроточной воде 10-15 мин. Сменив воду, белье можно выполоскать дочиста. Кстати, в стиральных машинах белье полощется также в двух-трех водах, а не в проточной воде. Мыть посуду лучше всего в раковине с двумя отделениями и пробками для сливных отверстий. Так же можно мыть овощи. Не забывайте, что вода — это богатство, красота и жизнь нашей планеты, и её надо беречь.
Учитель. Известны случаи пожаров причиной, которых являлся дождь?
Мы можете это объяснить?
Объяснить это явление, можно только изучив химические свойства воды.
Слайд №7. Химические свойства воды:
Разложение воды в индивидуальной карте записать уравнение реакции.
Проверка – прочитать уравнение, используя химический язык.
(вопросы на внимательность)
Как называется прибор — эвдиометр
- Условия прохождения реакции — пост. ток, 2000 гр.С
- Объемные отношения -1:2,
- Массовые -1:8
Взаимодействие с активными металлами
Как определить активность металла, чтобы правильно написать уравнение реакции. Металлы по своей активности делятся на три группы: активные, средней активности и неактивные. Работа с рядом активности.
Н2О +
- Взаимодействие с менее активными металлами
- Взаимодействие с неметаллами
- Взаимодействие с оксидами металлов
- Взаимодействие с оксидами неметаллов
Запишите уравнения реакций по слайду, определите тип химической реакции (в индивидуальной карте).
Самопроверка химических свойств по слайду
Давайте просмотрим видеоролики взаимодействия воды.
Смотрите внимательно. Обратите внимание на определения. Условия течения реакций.
Что такое щелочь? (Растворимые основания)
Основания – это сложные вещества, состоящие из металлов и одной или несколько гидроксильных групп ОН.
Что за вещество фенолфталеин? (Индикатор – вещества, изменяющие свою окраску в зависимости от среды)
1) С активными металлами IA группы и IIA групп.
2Na + 2HOH = 2 Na OH + H2↑ +Q
Ca + 2HOH = Ca (OH)2 + H2↑
2) с менее активными металлами при нагревании
Zn+HOH=ZnO+H2↑
3) С неактивными металлами
Взаимодействие меди с водой — не реагирует с водой никогда.
Ребята, как вы думаете, будут ли с водой взаимодействовать серебро и золото.
Минута для релаксации (под шум прибоя)
Проведём физминутку.
Очень всем нужна вода
Делай – раз, делай – два.
Звери у ручья напились
Вправо влево наклонились.
Вместе на носочки встали,
Тучку лапками достали.
Дружно хлопнули в ладоши
До чего же день хороший.
Дождик вдруг полил с утра.
За работу нам пора!
Второй видеоролик
4. Взаимодействие с неметаллами
С + НОН=СО+Н2↑
5. Взаимодействие со сложными веществами
1) Взаимодействие с оксидами неметаллов.
СаО+НОН=Са (ОН)2+Q
2) Взаимодействие с оксидами неметаллов.
Просмотр видеоролик взаимодействие с кислотными оксидами.
P2O5 + 3H2O —>2 H3PO4
Применение воды.
Ни умыться, не напиться,
Без воды
Листику не распуститься
Без воды
Без воды прожить не могут
Птица, зверь и человек
И поэтому всегда
Всем везде нужна вода.
Что может быть привычнее для нас, чем вода? Это самое распространенное вещество на поверхности земли в природе. Жизнь человека во все времена самым тесным образом была связана с водой.
Работа с книгой
Используя рис.44 стр. 109. Дайте характеристику применению воды. Беседа.
Применение воды
Земледелие. Выращивание достаточного количества сельскохозяйственных культур на открытых засушливых землях требует значительных расходов воды, доходящих до 90 % в некоторых странах.
Питьё и приготовление пищи
Живое человеческое тело содержит от 50 % до 75 % воды, в зависимости от веса и возраста. Потеря организмом человека более 10 % воды может привести к смерти. В зависимости от температуры и влажности окружающей среды, физической активности и т.д. человеку нужно выпивать разное количество воды. Ведётся много споров о том, сколько воды нужно потреблять для оптимального функционирования организма.
Питьевая вода представляет собой воду из какого-либо источника, очищенную от микроорганизмов и вредных примесей. Пригодность воды для питья при её обеззараживании перед подачей в водопровод оценивается по количеству кишечных палочек на литр воды, поскольку кишечные палочки распространены и достаточно устойчивы к антибактериальным средствам, и если кишечных палочек будет мало, то будет мало и других микробов. Если кишечных палочек не больше, чем 3 на литр, вода считается пригодной для питья.
Растворитель
Вода является растворителем для многих веществ. Она используется для очистки как самого человека, так и различных объектов человеческой деятельности. Вода используется как растворитель в промышленности.
Теплоноситель
Среди существующих в природе жидкостей вода обладает наибольшей теплоёмкостью. Теплота её испарения выше теплоты испарения любых других жидкостей, а теплота кристаллизации уступает лишь аммиаку. В качестве теплоносителя воду используют в тепловых сетях, для передачи тепла по теплотрассам от производителей тепла к потребителя
ее состав, строение молекулы, физические свойства. Химические свойства воды
Билет № 15
1. Вода: ее состав, строение молекулы, физические свойства. Химические свойства воды: разложение, отношение к натрию, оксиду кальция, оксиду серы (IV). Основные загрязнители природной воды
Состав воды можно выяснить с помощью реакции разложения электрическим током. Образуется два объема водорода на один объем кислорода (объем газа пропорционален количеству вещества):
2H2O = 2H2↑ + O2↑
Вода состоит из молекул. Каждая молекула содержит два атома водорода, соединенные ковалентными связями с одним атомом кислорода. Угол между связями около 105°:
O — H
|
H
Поскольку кислород является более электроотрицательным элементом (сильным окислителем), общая электронная пара ковалентной связи смещается к атому кислорода, на нем образуется частичный отрицательный заряд δ−, на атомах водорода — частичный положительный δ+. Соседние молекулы притягиваются друг к другу противоположными зарядами — это обуславливает сравнительно высокую температуру кипения воды.
Вода при комнатной температуре — бесцветная прозрачная жидкость. Температура плавления 0º C, температура кипения при атмосферном давлении — 100° С. Чистая вода не проводит электрический ток.
Интересной особенностью воды является то, что она имеет наибольшую плотность 1 г/см3 при температуре около 4° С. При дальнейшем понижении температуры плотность воды снижается. Поэтому с наступлением зимы верхние замерзающие слои воды становятся легче и не погружаются вниз. Лед образуется на поверхности. Промерзания водоема до дна обычно не происходит (к тому же лед тоже имеет плотность меньше воды и плавает на поверхности).
Химические свойства:
- Вода разлагается при пропускании электрического тока* на водород и кислород:
2H2O = 2H2↑ + O2↑ - Вода взаимодействует с натрием и некоторыми другими активными металлами, которые вытесняют из нее водород, образуется щелочь (гидроксид натрия):
2Na + 2HOH = 2NaOH + H2↑ - Оксид кальция (негашеная известь) бурно взаимодействует с водой (гасится) с выделением большого количества тепла, что может быть
даже причиной пожара. Образуется гидроксид кальция (гашеная известь):
CaO + H2O = Ca(OH)2 + Q - Большинство оксидов неметаллов реагируют с водой с образованием кислот. Оксид серы (IV) взаимодействует с водой с образованием серни́стой кислоты:
SO2 + H2O = H2SO3
К основным загрязнителям природной воды относятся сточные воды промышленных предприятий, содержащие соединения ртути, мышьяка и других токсичных элементов. Стоки животноводческих комплексов, городов могут содержать отходы, вызывающие бурное развитие бактерий. Большую опасность для природных водоемов представляет неправильное хранение (не обеспечивающее защиту от атмосферных осадков) или применение удобрений и ядохимикатов, смываемых в водоемы. Транспорт, особенно водный, загрязняет водоемы нефтепродуктами и бытовым мусором, выбрасываемым недобросовестными людьми прямо в воду.
Для охраны вод необходимо вводить замкнутое водоснабжение промышленных предприятий, комплексную переработку сырья и отходов, строительство очистных сооружений, экологическое воспитание населения.
* Для электролиза воды используются растворы солей
2. Опыт. Распознавание соли угольной кислоты среди трех предложенных солей.
Качественной реакцией на карбонаты служит взаимодействие с кислотами, сопровождающееся бурным выделением углекислого газа:
CaCO3 + 2HCl = CaCl2 + H2O + CO2↑
или, в ионном виде:
CO32− + 2H+ = H2O + CO2↑
Доказать, что выделяется именно оксид углерода (IV), можно, пропуская его через раствор известковой воды, что вызывает её помутнение:
CO2 + Ca(OH)2 = CaCO3↓ + H2O
Чтобы распознать соль угольной кислоты, добавляем во все три пробирки немного кислоты (чтобы не вылилась через край при «вскипании»). Где будет выделяться бесцветный газ без запаха, там находится карбонат.
автор: Владимир Соколов