Обмен веществ в биологии это: 2. Обмен веществ. Пластический и энергетический обмен

Содержание

Обмен веществ и энергии

Обмен веществ — это совокупность протекающих в живых организмах химических превращений, обеспечивающих их рост, развитие, процессы жизнедеятельности, воспроизведение потомства, активное взаимодействие с окружающей средой. Во всех живых организмах, от самых примитивных до самых сложных, каким является человек, основа жизни — это обмен веществ и энергии. Благодаря ему каждый организм не только поддерживает своё существование, но развивается и растет. Обмен веществ определяет цикличность жизни: рождение, рост и развитие, старение и смерть.

Пластический и энергетический обмен

Под пластическим обменом понимают такие процессы, в ходе которых в клетках создаются новые соединения и новые структуры, характерные для данного организма. Под энергетическим обменом понимают такие превращения энергии, в ходе которых в результате биологического окисления выделяется энергия, необходимая для жизнедеятельности клеток, тканей и всего организма в целом.

Результатом биологического окисления является образование углекислого газа, аммиака, соединений фосфора, натрия, хлора, которые выводятся из организма. Эта заключительная стадия обмена веществ. Она осуществляется кровью, легкими, потовыми железами, органами мочевыделения.

Обмен белков

Пищевые белки в ходе подготовительной стадии обмена расщепляются сначала в желудке пепсином, а затем в двенадцатиперстной кишке ферментом поджелудочной железы трипепсином до аминокислот. Аминокислоты через кровеносные капилляры ворсинок поступают в печень. Здесь избыточные аминокислоты теряют свой азот и превращают в жиры и углеводы. В клетках из аминокислот строятся белки тела. Белки входят в состав ядер, цитоплазмы и мембран клеток. Они являются ферментами, входят в состав антител. Белки принимают участие в свертывание крови и в транспортировке газов. Белки входят в состав костей.

Обмен жиров

В органах пищеварения во время подготовительной фазы обмена жиры распадаются на глицерин и жирные кислоты.

В эпителии кишечника синтезируется жир, характерный для организма, и через лимфатическую систему направляется в жировое депо и клетки, где он используется как запасное вещество и строительный материал. Жиры выполняют в организме много функций. Они входят в состав клеточных мембран, в них растворяются некоторые витамины. Из жиров образуются некоторые гормоны и биологически активные вещества. В организме человека выполняют защитную роль.

Обмен углеводов

Сложные углеводы начинают распадаться в ротовой полости под действием ферментов слюны — амилазы. В двенадцатиперстной кишке под действием ферментов, выделяемых поджелудочной железой, они расщепляются до глюкозы и других простых углеводов. В тонкой кишке продукты распада всасываются кишечными ворсинками в кровь и направляются в печень. Здесь излишки сахаров задерживаются и превращаются в гликоген и другие соединения, а оставшаяся часть глюкозы в необходимом количестве направляется в кровь и распределяется между клетками тела.

В организме глюкоза прежде всего является источником энергии.

Обмен воды в организме

Вода — универсальный растворитель. Все жизненные процессы, все биохимические реакции происходят в водной среде. Внутренняя среда человека содержит до 90% воды. Вода в организме либо химически связана с другими соединениями, либо содержит в себе растворенные минеральные соли и органические вещества. Пищеварительные соки содержат воду. Транспорт питательных веществ и кислорода осуществляется в жидкой среде. Продукты распада тоже выносятся водой. Таким образом, в организме поддерживается определенный баланс между поступающей и выделяемой водой.

Обмен минеральных солей

Ни вода, ни минеральные соли не являются источниками энергии, но они необходимы для осуществления важных функций организма. Минеральные соли содержатся в клеточных ядрах и цитоплазме, в жидкостях, образующих внутреннюю среду, в пищеварительных соках и других биологических жидкостях.


Другие заметки по биологии

Исследования

Научно-исследовательская работа

Научно-исследовательская работа является неотъемлемой частью деятельности нашей компании.

На протяжении более 15 лет специалисты компании занимаются изучением биологической активности различных природных субстанций (как отдельных веществ, так и их комплексов), создают новые лекарственные препараты и осуществляют работу по изучению их терапевтической эффективности.

Основная область исследований компании — это изучение действия природных соединений и их комплексов преимущественно в низких концентрациях («малых дозах»). Проводимая научно-исследовательская работа направлена на выявление субстанций (соединений), обладающих желательной биологической (фармакологической) активностью, и представляющих потенциальный интерес для создания новых лекарств.

Все препараты, производимые нашей компанией, являются собственными уникальными разработками компании.

Компания предъявляет высокие требования к качеству препарата еще на первых стадиях разработки. В состав новых препаратов входят только хорошо изученные компоненты, подтвердившие свою активность в собственных исследованиях. Использование передовых научно-исследовательских методов, достижений молекулярной и клеточной биологии, современных биомедицинских технологий, позволяет специалистам компании с 2012 года создавать препараты с нового поколения.

Специалистами компании предложен инновационный подход к решению задачи исследования природных соединений в широком диапазоне концентраций. Использование современных высокоточных методов и тест-систем в различных экспериментальных моделях in vitro позволяет получать ценную информацию о биологической активности веществ, выявлять их действие в малых и сверхмалых концентрациях. Такой инновационный подход позволяет эффективно проводить скрининг и отбор наиболее интересных с фармакологической точки зрения компонентов для дальнейших исследований и уже на первых этапах отсеивать вещества, обладающие нежелательными эффектами. Компанией накоплен обширный материал о действии различных компонентов в широком диапазоне концентраций. Научно-исследовательская работа, проводимая специалистами компании, позволяет создавать высоко эффективные и безопасные препараты на основе природных соединений.

Все биологические, фармакологические, токсикологические и другие доклинические исследования проводятся на базе специализированных научно-исследовательских центров РФ высоко квалифицированными специалистами в соответствии с международными стандартами и принципами GLP.

Исследования отдельных компонентов и их комбинаций проводятся с использованием различных экспериментальных моделей in vitro (например, культуры клеток и тканей) и in vivo (различные виды лабораторных животных). Выбор методики в каждом случае определяется конкретными задачами, стоящими при изучении действия как отдельных компонентов, так и их комбинаций (препаратов). При необходимости для выбора оптимальной методики, максимально соответствующей задачам исследования, привлекаются научные специалисты профильных научно-исследовательских организаций (учреждений). Фундаментальные исследования, проводимые с использованием последних достижений молекулярной биологии и современных высокоточных методов анализа, позволяют не только фиксировать биологические эффекты, но и объяснять механизм действия изучаемого соединения (субстанции) или препарата.

Токсикологические и доклинические исследования новых (экспериментальных) лекарственных препаратов проводятся по общепринятым методикам и в соответствии с «Рекомендациями по проведению доклинических исследований лекарственных средств» (под редакцией Миронова А.Н., издание Министерства здравоохранения и социального развития Российской Федерации, ФГБУ «Научный Центр Экспертизы средств медицинского применения», Москва, 2012).

Клинические исследования новых (экспериментальных) лекарственных проводятся в тесном сотрудничестве с ведущими ветеринарными специалистами и специалистами сельскохозяйственных ВУЗов Российской Федерации и Беларуси.

Пострегистрационные исследования лекарственных препаратов, проводимые на базе ветеринарных клиник, животноводческих комплексов, позволяют контролировать терапевтическую эффективность, расширять показания, корректировать схемы применения препаратов при лечении различных заболеваний животных.

Проводимая научно-исследовательская работа и знания, накопленные в ходе изучения биологически активных веществ, позволяют с уверенностью говорить о перспективности использования низких концентраций природных соединений и их комплексов в качестве действующих компонентов новых эффективных лекарственных препаратов.

Материалы:

Каталог исследований ХЕЛВЕТ

2015

Вестник РГАТУ-Альвесол

Двойное слепое рандомизированное плацебо-контролируемое исследование психотропной активности препарата Фоспасим

Нарушение метаболизма костной ткани: диагностика, биохимические маркеры, способы коррекции

Оценка влияния препарата «Фоспасим» на адаптивно-приспособительные реакции животных в стрессовой ситуации

Препарат Анальгивет. Результаты открытого проспективного рандомизированного контролируемого клинического исследования

Фоспасим с точки зрения доказательной медицины

Эхинацея-цитокины

 

§47. Значение обмена веществ н энергии в организме | 8 класс Учебник «Биология» «Атамура»

§47. Значение обмена веществ н энергии в организме


Между живым организмом и окружающей средой постоянно про­исходит обмен веществ и энергии. Это одно из свойств живых орга­низмов. В пищеварительном тракте ежедневно принимаемая пиша подвергается сложным изменениям. Питательные вещества обеспе­чивают жизнедеятельность клеток, тканей. При расщеплении бел­ков. жиров и углеводов выделяется энергия, которая расходуется на поддержание жизнедеятельности отдельных клеток и организма в целом. Ненужные шлаки (продукты окончательного разложения веществ) постоянно выводятся из организма наружу через органы дыхания и выделения и частично — через кожу.

Поступление в организм различных веществ из внешней среды, их усвоение, изменение и выделение во внешнюю среду образую­щихся продуктов распада, т. е. поступление, выделение, а также вза­имопревращение всех веществ, называют обменом веществ, или метаболизмом (от греч. метаболе — перемена, превращение). Благо­даря метаболизму сохраняется постоянство внутренней среды орга­низма — крови, лимфы, тканевой жидкости.

Организм растет, раз­вивается и продолжает жить.

Метаболизм состоит из двух процессов:

1               процесс — пластический обмен (ассимиляция, анаболизм):

2               процесс — энергетический обмен (диссимиляция, катаболизм). Эти два процесса тесно взаимосвязаны. Регулируется обмен веществ и энергии нервным и гуморальным путями.

Пластический обмен называют еще ассимиляцией, т. е. накопле­нием. В последнее время чаще применяют термин анаболизм (от греч. анаболе — подъем). К пластическому обмену относится обмен (син­тез) белков, жиров, углеводов и нуклеиновых кислот нашего тела. То есть из простых веществ пищи образуются (синтезируются) слож­ные органические вещества нашего организма. Эти вещества обес­печивают рост клеток, из них же строятся новые клетки на смену отмершим. Кроме того, органические соединения входят в состав меж­клеточных образований. Для пластического обмена, т. е. роста кле­ток. используется энергия.

Белковый обмен. Если убрать воду, то сухое вещество организма человека на 80% представлено белками. Все растительные и живот­ные белки состоят из 20 видов аминокислот. Они делятся на 2 груп­пы: заменимые и незаменимые. Незаменимые кислоты должны посту­пать вместе с пищей, а заменимые кислоты могут синтезироваться в организме.

Полноценные белки содержат все необходимые организму ами­нокислоты. В большом количестве они встречаются в молоке, яйцах, мясе и рыбных продуктах. В пищеварительном тракте фермент пеп­син расщепляется белки до аминокислот, и они разносятся кровью к клеткам. Белки входят в состав всех ферментов и органоидов, всех клеток, тканей и органов. В запас белки не откладываются. Их свое­временное поступление имеет особенно большое значение для расту­щего организма. Недостаток белковой пищи замедляет рост и разви­тие детей.

Бели человек употребляет разнообразную белковую пишу, но не­дополучает углеводы и жиры, то белки могут превращаться в орга­низме в углеводы (гликоген) и жиры. Но сами белки, необходимые для организма, никогда не образуются из углеводов и жиров. Ведь кроме углерода, водорода и кислорода белки обязательно содержат еще и азот, которого нет в углеводах и жирах.

В результате разрушения белков в организме образуются амми­ак (NH3), мочевина и мочевая кислота. Вместе с мочой они выво­дятся наружу. Интенсивность белкового обмена определяется ало тистым балансом, т. е. соотношением количества поступившего в организм и выведенного из организма азота. В растущем организме количество поступившего азота должно быть больше выведенного.

Обмен жиров. Жиры входят в состав всех мембран клеток. Жиры разных животных, как и жиры разных органов, различаются по хи­мическому составу и свойствам. Они состоят из глицерина и жир­ных кислот. Все жиры пищи под действием липазы разлагаются до глицерина и жирных кислот. В таком виде они всасываются в лим­фу и переносятся по организму к клеткам. В составе жиров имеют­ся насыщенные и ненасыщенные жирные кислоты.  Ненасыщенные жир­ные кислоты содержатся в основном в маслах растительного проис­хождения.

При расщеплении жиров выделяется в 2 раза больше энергии, чем при расщеплении белков и углеводов. При полном растеплении 1 г жира высвобождается 39,1 кДж энергии, а при расщеплении 1 г белков или углеводов — 17,2 кДж. Жиры откладываются про запас в подкожной клетчатке, сальнике брюшины и т. д.

Обмен углеводов. В составе пищи они встречаются в виде простых и сложных сахаров. Самый простой углевод, легко усваиваемый на­шим организмом, глюком. Все углеводы, поступающие с нишей, расщепляются до глюкозы и разносятся к тканям. Конечными про­дуктами расщепления углеводов являются вода и углекислый газ.

Нормальная работа организма зависит от постоянства концентра­ции глюкозы в крови. В норме сахара (глюкозы) в крови содержится 3,3-5,6 миллимоль/л, или 0,12% в плазме крови. Излишки сахара от­кладываются про запас в печени и мышцах в виде гликогена. При ин­тенсивной работе гликоген расщепляется до глюкозы, которая посту­пает в кровь. Этот процесс регулируют гормоны поджелудочной же­лезы: инсулин и глюкагон (см. с. 50). При недостаточном количестве в пище углеводы образуются из белков и жиров. Если вместе с нишей в организм поступает много углеводов, то они превращаются в жиры.

При недостатке в пище одного из продуктов и избытке другого в нашем организме происходит их взаимопревращение. Вы не раз слыша­ли фразу «не ешьте много сладкого, потолстеете». Это верно, т. к. угле­воды легко превращаются в жиры и наоборот жиры в углеводы. Но при недостатке белков обязательно наступят тяжелые последствия на­рушения обмена веществ, т. к. белки не могут быть получены ни из жи­ров. ни из углеводов, ведь они содержат отсутствующие в них азот и серу. Полноценная белковая пища как растительного, так и животного происхождения особенно нужна растущему организму.

Обмен воды и минеральных солей. Вода составляет около 60% от массы тела. В организме детей воды больше. В различных органах ее содержание также неодинаково. Например, в печени, селезенке, мыш­цах 80% массы составляет вода. Она растворяет органические и неор­ганические вещества пищевых продуктов, регулирует температуру тела. Все химические реакции в организме протекают с ее участием.

Обмен воды тесно связан с обменом минеральных солей. Они вхо­дят в состав клеток и участвуют в синтезе белков, ферментов, гормо­нов. Участвуют они и в возбуждении нервных волокон, сокращении мышц, свертывании крови. Минеральные соли составляют около -1% массы тела. Для организма наиболее необходимы Na, К, (Ж Mg, Cl. Эти элементы входят также в состав минеральных солей. Содержа­ние некоторых элементов очень небольшое, но они играют важную роль в организме. Недостаток минеральных веществ приводит к на­рушению общего обмена веществ. Недостаток иода, железа и других веществ приводит к отставанию в росте и развитии у детей или к болезням у взрослых.

Таким образом, обмен веществ — основа роста, развития организ­ма и продолжения жизнедеятельности.

О Обмен веществ, или метаболизм: пластический обмен, или ассими­ляция (анаболизм): аминокислоты (заменимые и незаменимые).

азотистый баланс.

А

1. Что такое метаболизм? Из каких противоположных процессов со­стоит обмен веществ?

2.             Как происходит обмен жиров?

3.             Значение воды для организма. Как протекает ее обмен?

В

1.             Что та кое а набол изм?

2.             Как протекает обмен углеводов?

3.    Какие вещества образуются при распаде жиров и углеводов? Как они удаляются из организма?

С

1.     Каково значение обмена веществ и энергии?

2.     Как протекает обмен белков?

3.     Как происходит обмен солей?

Обмен веществ и энергии. Питание реферат по биологии

РЕФЕРАТ по теме: ОБМЕН ВЕЩЕСТВ И ЭНЕРГИИ. ПИТАНИЕ ВВЕДЕНИЕ Обмен веществ и энергии – это совокупность физических, химических и физиологических процессов превращения веществ и энергии в организме человека и обмен веществами и энергией между организмом и окружающей средой. Непрерывно идущий между организмом и окружающей средой обмен веществ и энергией является одним из наиболее существенных признаков жизни. Для поддержания процессов жизнедеятельности обмен веществ и энергии обеспечивает пластические и энергетические потребности организма. Это достигается за счет извлечения энергии из поступающих в организм питательных веществ и преобразования ее в формы макроэргических (АТФ и другие молекулы) и восстановленных (НАДФ-Н – никотин-амид-адениндинуклеотидфосфат) соединений. Их энергия используется для синтеза белков, нуклеиновых кислот, липидов, а также компонентов клеточных мембран и органелл клетки, для выполнения механической, химической, осмотической и электрической работ, транспорта ионов. В ходе обмена веществ в организм доставляются пластические вещества, необходимые для биосинтеза, построения и обновления биологических структур. В обмене веществ (метаболизме) и энергии выделяют два взаимосвязанных, но разнонаправленных процесса: анаболизм, основу которого составляют процессы ассимиляции, и катаболизм, в основе которого лежат процессы диссимиляции. Анаболизм – это совокупность процессов биосинтеза органических веществ, компонентов клетки и других структур органов и тканей. Анаболизм обеспечивает рост, развитие, обновление биологических структур, а также непрерывный ресинтез макроэргов и накопление энергетических субстратов. Катаболизм – это совокупность процессов расщепления сложных молекул, компонентов клеток, органов и тканей до простых веществ, с использованием части из них в качестве предшественников биосинтеза, и до организма Потребность организма в пластических веществах может быть удовлетворена тем минимальным уровнем их потребления с пищей, который будет уравновешивать потери структурных белков, липидов и углеводов при поддержании энергетического баланса. Эти потребности индивидуальны и зависят от таких факторов, как возраст человека, состояние здоровья, интенсивность и вид труда. Человек получает из окружающей среды в составе пищевых продуктов заключенные в них энергию и пластические вещества, минеральные ионы и витамины. Белки. Потребность в белке определяется минимальным количеством пищевого белка, который будет уравновешивать потери организмом азота, при сохранении энергетического баланса. Белки находятся в состоянии непрерывного обмена и обновления. В организме здорового взрослого человека количество распавшегося за сутки белка равно количеству вновь синтезированного. Животные существа могут усваивать азот только в составе аминокислот, поступающих в организм с белками пищи. Важным фактором обмена белков организма является повторное использование (реутилизация) аминокислот, образовавшихся при распаде одних белковых молекул, для синтеза других. Из аминокислот, источниками которых являются белки пищи, и аминокислот, образующихся в организме, синтезируются свойственные ему белковые молекулы, пептидные гормоны, коэнзимы. В этом заключается пластическая роль белков пищи. Скорость распада и обновления белков организма различна. Полупериод распада гормонов пептидной природы составляет минуты или часы, белков плазмы крови и печени около 10 суток, белков мышц около 180 суток. В среднем белки организма человека обновляются за 80 суток. Липиды. Липиды организма человека – это, главным образом, нейтральные сложные эфиры глицерина и высших жирных кислот – триглицериды, фосфолипиды и стерины. Высшие жирные кислоты, входящие в состав сложных липидных молекул в виде углеводородных радикалов, бывают насыщенными и ненасыщенными, содержащими одну и более двойных связей. Липиды играют в организме энергетическую и пластическую роль. По сравнению с молекулами углеводов и белков молекула липидов является более восстановленной. Поэтому при окислении липидов в организме образуется больше молекул АТФ и тепла. За счет окисления жиров обеспечивается около 50% потребности в энергии взрослого организма. В отличие от белков, которые не образуют специальных запасных форм, служащих источником энергии, запасы нейтральных жиров — триглицеридов в жировых депо человека в среднем составляют 10-20% массы его тела. Из них около половины локализуется в подкожной жировой клетчатке. Кроме того, значительные запасы нейтрального жира откладываются в большом сальнике, околопочечной клетчатке, в области гениталий и между мышцами. Жиры, откладываясь в жировых депо, служат долгосрочным резервом питания организма. Жиры являются источником образования эндогенной воды. При окислении 100 г нейтрального жира в организме образуется около 107 г воды. Углеводы. Организм человека получает углеводы, главным образом в виде растительного полисахарида крахмала и в небольшом количестве в виде животного полисахарида гликогена. В желудочно-кишечном тракте осуществляется их расщепление до уровня моносахаридов (глюкозы, фруктозы, лактозы, галактозы). Моносахариды, основным из которых является глюкоза, всасываются в кровь и через воротную вену поступает в печеночные клетки. Здесь фруктоза и галактоза превращается в глюкозу. Внутриклеточная концентрация глюкозы в гепатоцитах близка к ее концентрации в крови. При избыточном поступлении в печень глюкозы она фосфорилируется и превращается в резервную форму ее хранения – гликоген. В течение первых 12 и более часов после приема пищи поддержание концентрации глюкозы в крови и обеспечение потребности организма в углеводах реализуются за счет распада гликогена в печени. Вслед за истощением запасов гликогена усиливается синтез ферментов, обеспечивающих реакции глюконеогенеза. Организм человека нуждается только в одном из производных углеводов – аскорбиновой кислоте (витамине С), которая не может синтезироваться в организме человека и других приматов. Обмен воды и минеральных веществ. Минимальная суточная потребность в воде составляет около 1700 мл. (в среднем около 2500 мл). Потребность организма в воде зависит от характера питания. При питании преимущественно углеводной, жировой пищей и при небольшом поступлении в организм NaCI эти потребности меньше. Пища, богатая белками, а также повышенный прием соли, обусловливают большую потребность в воде. Недостаточное поступление в организм воды или ее избыточная потеря приводят к дегидратации. Это сопровождается сгущением крови, ухудшением ее реологических свойств и нарушением гемодинамики. Недостаток в организме воды в объеме 20% массы тела ведет к летальному исходу. Избыточное поступление воды в организм или снижение ее объемов, выводимых из организма, приводит к водной интоксикации. Обмен воды и минеральных ионов в организме тесно взаимосвязаны и взаимозависимы. Это обусловлено прежде всего необходимостью поддержания осмотического давления на относительно постоянном уровне во внутренней среде организма и в клетках, а также значением сил осмоса для обмена и выведения из организма как воды, так и минеральных ионов. Осуществление ряда физиологических процессов, как, например, возбуждения, синаптической передачи, сокращения мышцы невозможно без поддержания в клетке и во внеклеточной среде определенной концентрации Na\ K, Са и других минеральных ионов. Поскольку их синтез в организме не осуществляется, все они должны поступать в организм с пищей и питьем. Витамины. Избыточное поступление в организм витаминов может приводить к гипервитаминозу. При поступлении водорастворимых витаминов в дозах, превышающих суточную потребность, эти вещества могут быстро Умственный труд не требует столь значительных энергозатрат, как физический. Энергозатраты организма возрастают при умственной работе в среднем лишь на 2-3%. Умственный труд, сопровождающийся легкой мышечной деятельностью, психоэмоциональным напряжением, приводит к повышению энергозатрат уже на 11-19% и более. Уровень общих энергозатрат, как и ОО, зависит от возраста: суточный расход энергии возрастает у детей с 800 ккал (6 мес -1 год) до 2850 ккал (11-14 лет). Резкий прирост энергозатрат имеет место у подростков-юношей 14-17 лет (3150 ккал). После 40 лет энергозатраты снижаются и к 80 годам составляют около 2000-2200 ккал/сутки. В повседневной жизни уровень энергозатрат у взрослого человека зависит не только от особенностей выполняемой работы, но и от общего уровня двигательной активности, характера отдыха и социальных условий жизни. Регуляция обмена веществ и энергии В регуляции обмена веществ и энергии выделяют регуляцию обмена организма веществами и энергией с окружающей средой и регуляцию метаболизма в самом организме. Конечной целью регуляции обмена веществ и энергии является удовлетворение в соответствии с уровнем функциональной активности потребностей целостного организма, его органов, тканей и отдельных клеток в энергии и разнообразных пластических веществах. Регуляция обмена веществ и энергии – это мультипараметрическая регуляция, включающая в себя регулирующие системы множества функций организма (например, дыхания, кровообращения, выделения, теплообмена и др.). Роль центра в регуляции обмена веществ и энергии играет гипоталамус. Это обусловлено тем, что в гипоталамусе локализованы нервные ядра и центры, имеющие непосредственное отношение к регуляции голода и насыщения, теплообмена, осморегуляции. В гипоталамусе идентифицированы полисенсорные нейроны, реагирующие сдвигами функциональной активности на изменения концентрации глюкозы, водородных ионов, температуры тела, осмотического давления, т.е. важнейших гомеостатических констант внутренней среды организма. В ядрах гипоталамуса осуществляется анализ состояния внутренней среды организма и формируются управляющие сигналы, которые посредством эфферентных систем приспосабливают ход метаболизма к потребностям организма. Под управляющим влиянием гипоталамуса находится и используется в качестве эфферентной системы регуляции обмена веществ и энергии – эндокринная система. Гормоны гипоталамуса, гипофиза и других эндокринных желез оказывают прямое влияние на рост, размножение, дифференцировку, развитие и другие функции клеток. Гормоны принимают участие в поддержании в крови необходимого уровня таких веществ, как глюкоза, свободные жировые кислоты, минеральные ионы. Тепловой обмен Высвобождающаяся в организме при биологическом окислении энергия питательных веществ превращается в тепло, которое при его накоплении в тканях ведет к повышению температуры тела. Скорость биологического окисления возрастает при увеличении температуры. Чем интенсивнее протекание, обменных процессов, тем больше теплообразование в организме. Но несмотря на такую взаимозависимость обменных процессов и теплообразования самоускорения обмена и прироста температуры тела не происходит. Это объясняется тем, что прирост температуры тела над уровнем температуры окружающей среды сопровождается увеличением отдачи тепла и, следовательно, ограничением влияния температуры на обменные процессы. Живые организмы подразделяют на гомойотермные (теплокровные) и пойкилотермные (холоднокровные), в зависимости от скорости обменных процессов, способности поддерживать постоянную температуру тела и уровень активности в широком диапазоне изменений температуры окружающей среды. Гомойотермные (человек и млекопитающие) организмы характеризуются установленной на определенном уровне температурой тела и способностью сохранять постоянство температуры тела в пределах ± 2 °С, несмотря на изменения температуры внешней среды. Их отличает от пойкилотермных организмов, близких по массе и температуре тела, в несколько раз более высокий уровень энергетического обмена. Для теплокровных организмов характерен относительно независящий от изменений температуры окружающей среды уровень активности. Гомойотермные (человек и животные) являются также эндотермными, так как температура их тела определяется интенсивностью теплообразования за счет обменных процессов, протекающих внутри организма. Пойкилотермные (холоднокровные) организмы не способны поддерживать на постоянном, фиксированном уровне температуру тела при изменении температуры окружающей среды. Для них характерен более низкий по сравнению с теплокровными организмами уровень энергетического обмена. Интенсивность энергетических превращений и уровень активности холоднокровных организмов зависит от величины температуры среды их существования. Главным условием поддержания/постоянной температуры тела, в том числе и температуры человеческого организма, является достижение устойчивого баланса теплопродукции и теплоотдачи. Теплопродукция и теплоотдача Суммарная теплопродукция (теплообразование) в организме состоит из так называемой первичной теплоты, выделяющейся в ходе постоянно протекающих во всех органах и тканях реакций обмена веществ, и вторичной теплоты, образующейся при расходовании энергии макроэргических терморецепторов поступает через задние корешки спинного мозга к вставочным нейронам задних рогов. Затем, главным образом, по спиноталамическому тракту этот поток импульсов достигает передних ядер таламуса и после переключения проводится в соматосенсорную кору больших полушарий. Эта часть температурного анализатора обеспечивает в основном возникновение и топическую локализацию субъективных температурных ощущений типа: «холодно», «прохладно», «тепло», «температурный комфорт» или «дискомфорт», «Жарко». На их основе формируются терморегуляторные реакции. Часть афферентного потока нервных импульсов от периферических терморецепторов кожи и внутренних органов поступает из спинного мозга по более древним восходящим (спиноталамическому и спиноретикулярному) трактам в ретикулярную формацию, неспецифические ядра таламуса, в ассоциативные зоны коры головного мозга и медиальную преоптическую область гипоталамуса. Центральные механизмы регуляции теплообмена. Регуляция теплообмена, а следовательно, и температуры тела, осуществляется, главным образом, центром терморегуляции, локализующимся в медиальной преоптической области переднего гипоталамуса и заднем гипоталамусе. В терморегуляторном центре обнаружены различные по функциям группы нервных клеток – термочувствительные нейроны; клетки, «задающие» уровень поддерживаемой в организме температуры тела («установочную точку» терморегуляции), в переднем гипоталамусе; эффекторные нейроны, управляющие процессами теплопродукции и теплоотдачи, в заднем гипоталамусе. Эффекторные механизмы теплообмена. В термонейтральных условиях внешней среды баланс теплопродукции и теплоотдачи и поддержание температуры тела достигается преимущественно с помощью сосудодвигательных реакций. Если в центре терморегуляции величины средней интегральной температуры тела и установленной регулируемой температуры не совпадают, включаются эффекторные механизмы, которые через изменения кровотока в сосудах поверхности тела изменяют в необходимом направлении величину теплоотдачи организма. При охлаждении организма появляется увеличении амплитуды и частоты электромиографической активности, рост тонического напряжения мышцы, однако видимых сокращений мышца при этом не совершает. В терморегуляционный тонус последовательно вовлекаются мышцы подбородка, шеи, верхнего плечевого пояса, туловища, сгибатели конечностей. Последним объясняется принятие определенной позы (сворачивание в клубок), уменьшающей площадь поверхности тела, контактирующей с внешней средой, и снижающей интенсивность теплоотдачи. При продолжающемся охлаждении организма, когда начинается снижение его внутренней температуры, повышение тонуса мышц переходит в качественно новое состояние – возникают непроизвольные периодические сокращения скелетной мускулатуры, получившие название холодовой дрожи. В этом случае совершается сравнительно небольшая механическая работа, и почти вся метаболическая энергия в мышце освобождается в виде тепла. В условиях холода посредством симпатической нервной системы, через ее медиатор норадреналин, стимулируется липолиз в жировой ткани. В кровоток выделяются и в последующем окисляются с образованием большого количества тепла свободные жирные кислоты. Норадреналин и адреналин вызывают быстрое, но непродолжительное повышение теплопродукции. Более продолжительное усиление обменных процессов достигается под влиянием гормонов щитовидной железы – тироксина и трийодтиронина. Если, несмотря на активацию обмена веществ, величина теплопродукции организма становится меньше величины теплоотдачи, возникает понижение температуры тела, получившее название гипотермии. Противоположное состояние организма, сопровождающееся- повышением температуры тела, – гипертермия, имеет место, когда интенсивность теплопродукции превышает способность организма отдавать тепло в окружающую среду посредством имеющихся способов теплоотдачи. Гипертермия наиболее легко развивается в условиях действия на организм внешней температуры, превышающей 37°С при 100% влажности воздуха, когда испарение пота или влаги с поверхности тела становится невозможным. В случае продолжительной гипертермии может развиваться «тепловой удар». Это состояние организма характеризуется покраснением кожи в результате расширения периферических сосудов, отсутствием потоотделения, признаками нарушения функций центральной нервной системы (нарушение ориентации, бред, судороги). В более легких случаях гипертермии может проявиться тепловой обморок, когда в результате резкого расширения периферических сосудов происходит падение артериального давления. Как при гипотермии, так и при гипертермии имеет место нарушение основного условия поддержания постоянства температуры тела – баланса теплопродукции и теплоотдачи. Питание Питание человека – это процесс доставки и усвоения питательных веществ в организм для обеспечения его энергетических и пластических потребностей, а также потребностей в воде, витаминах, минеральных веществах. Кроме этого питание, удовлетворяя одну из основных биологических потребностей организма, должно приносить человеку чувство удовольствия. Формирование у человека культуры питания является одним из основных способов сохранения его здоровья и профилактики многих заболеваний. Удовлетворение пластических и энергетических потребностей организма служит критерием для формирования норм питания. В свою очередь, нормы питания, определяющие величины потребления пищевых веществ, основываются на данных научных исследований обмена жиров, белков, углеводов, воды, минеральных ионов, витаминов у различных групп населения. легкую физическую нагрузку. Для скорейшего выздоровления, восстановления массы тканей организма после тяжелых истощающих заболеваний, перенесенных операций, обширных ожогов также требуется пищевой рацион с более высоким (1,5-2,0 г/кг в сутки), чем для здорового, содержанием белка. При ограниченном поступлении питательных веществ имеет место повышенная утомляемость, снижаются как физическая, так и умственная работоспособность, замедляется рост и развитие детей, уменьшается масса тела, могут появляться отеки (при белковой недостаточности), снижается устойчивость организма к инфекционным заболеваниям. Переедание приводит к развитию дискомфорта в функциях желудочно-кишечного тракта, сонливости, ожирению, снижению физической активности и трудоспособности. Увеличение массы тела и ожирение являются факторами риска сердечно-сосудистых заболеваний, сахарного диабета и уменьшения продолжительности жизни. К важнейшим физиологическим принципам, которые необходимо соблюдать при составлении пищевых рационов, относится режим питания, то есть приспособление характера питания, частоты и периодичности приема пищи к суточным ритмам труда и отдыха, к физиологическим закономерностям деятельности желудочно-кишечного тракта. Принято считать, что наиболее рациональным является четырехразовый прием пищи в одни и те же часы суток. Интервал между приемами пищи должен составлять 4-5 часов. Этим достигается более равномерная функциональная нагрузка на пищеварительный аппарат, что способствует созданию оптимальных условий для полной обработки пищи. Рекомендуется вечерний прием легкоусвояемой пищи не позднее, чем за 3 часа до отхода ко сну. Общую калорийность суточного пищевого рациона целесообразно распределять следующим образом: на завтрак – 25%, второй завтрак – 15%, обед – 35%, ужин – 25%. В случае невозможности осуществления четырехразового питания оно может быть трехразовым (30% калорий суточного пищевого рациона на завтрак, 45% – на обед, 25% – на ужин). Опасность для здоровья человека могут представлять вещества, которые содержатся в пищевых продуктах, выращенных или переработанных без соблюдения санитарно-гигиенических требований к сельскохозяйственным или промышленным технологиям. Это пестициды, нитраты, радионуклиды, лекарственные средства, металлы, пищевые добавки, консерванты. При попадании в организм они могут оказывать на ткани токсическое воздействие (металлы, радионуклиды), вызывать аллергические реакции (пищевые добавки, консерванты, лекарственные вещества). Пестициды могут накапливаться в жировой ткани, и медленно выводясь из организма оказывать длительное токсическое влияние.

2.3. Обмен веществ и энергии. Антропология и концепции биологии

2.3. Обмен веществ и энергии

Вся совокупность химических реакций, протекающих в живых организмах, называется обменом веществ, или метаболизмом. В результате этих реакций энергия, запасенная в химических связях, переходит в другие формы, т. е. обмен веществ всегда сопровождается обменом энергии. Первичным источником энергии для всего живого на Земле служит Солнце.

Многие организмы имеют уникальные метаболические пути, однако наиболее поразительно то общее, что присуще процессам метаболизма в живой природе. Несмотря на величайшее разнообразие живых организмов, отчетливо проявляется единство этих процессов. Выделяют две группы процессов метаболизма.

Анаболизм (ассимиляция) – совокупность процессов синтеза, идущих с потреблением энергии.

Катаболизм (диссимиляция) – совокупность процессов распада, сопровождающихся выделением энергии.

Анаболизм и катаболизм самым тесным образом взаимосвязаны: катаболические реакции дают «сырье» и энергию для анаболических процессов, в которых эта энергия запасается.

Все живые организмы можно разделить на группы, в зависимости от типа ассимиляции (рис. 2.5).

Автотрофы – организмы, способные самостоятельно синтезировать органические вещества из неорганических.

Рис. 2.5. Классификация типов анаболизма

Гетеротрофы – организмы, не способные синтезировать органические вещества из неорганических и нуждающиеся в поступлении готовых органических соединений.

Среди протистов можно выделить группу автогетеротрофных организмов, которые в зависимости от условий осуществляют либо автотрофный, либо гетеротрофный способ питания.

Фотоавтотрофы – организмы, использующие для синтеза энергию Солнца.

Хемоавтотрофы – организмы, использующие для синтеза энергию химических реакций.

Совокупность реакций катаболизма, протекающих во всех живых клетках, представляет собой разнообразные процессы биологического окисления. Поскольку запасенная в процессе ассимиляции энергия недоступна для непосредственного использования клеткой, основной функцией процесса биологического окисления является обеспечение организма энергией в доступной форме (прежде всего в виде АТФ). В природе организмы используют два пути получения энергии: аэробный распад (дыхание), проходящий в присутствии кислорода, и анаэробный распад (брожение), проходящий без кислорода (рис. 2.6). Соответственно организмы, реализующие эти пути, называются аэробами и анаэробами.

Рис. 2.6. Классификация типов катаболизма

Данный текст является ознакомительным фрагментом.

Продолжение на ЛитРес

Урок биологии «Обмен веществ» 5 класс

Тема: «Обмен веществ и превращение энергии»

Цели урока:

Методы обучения: проблемный, эвристический.

Оборудование: компьютер, мультимедийный проектор, компьютерная презентация «Обмен веществ и энергии», «Рабочая тетрадь. Биология: 6 класс».

ХОД УРОКА

I. Организационный момент

1. Проверка готовности класса к уроку.

II. Этап всесторонней проверки знаний.

Презентация.

Прежде чем приступить к изучению нового материала, давайте, попробуем ответить на вопрос «В чем отличие живых организмов от неживой среды?»

Признаки живого организма

  • Питание

  • Дыхание

  • Рост

  • Развитие

  • ?

III. Актуализация знаний

Чтобы узнать какое свойство мы будем изучать следующим, давайте посмотрим на слайд. Как вы понимаете фразу «Организм – открытая, саморегулирующаяся система»?

Для каких веществ организм открыт? Как вещества поступают в организм? Как называются эти процессы?

Что происходит с избытком веществ? Каким образом вещества выводятся из организма?

Этот процесс называется обменом веществ. Сообщение темы урока

Давайте сформулируем определение? Что такое обмен веществ?

IV. Изучение нового материала

Давайте сформулируем определение? Что такое обмен веществ?

Известно, что обмен веществ можно рассматривать с разных сторон: обмен веществ различается у растений и у животных, а также обмен веществ — это химический процесс.

Для того, чтобы узнать как можно больше о процессе обмена веществ мы разделимся на группы:

  1. Химики

  2. Ботаники

  3. Зоологи

Работа в группах:

1 группа: «Химики»

Задача: Изучить химическую природу обмена веществ.

Ход работы:

  1. Прочитайте текст, рассмотрите картинки и составьте план ответа по вопросам:

  • Как по-другому называется обмен веществ?

  • На какие стадии делится обмен веществ?

  • Что происходит на стадии катаболизма?

  • Что происходит на стадии анаболизма?

  • Что такое ферменты? Зачем они нужны в химических реакциях?

  1. Заполните схему:

2 группа «Ботаники»

Задача: Выявить особенности обмена веществ у растений.

Ход работы:

  1. Прочитайте текст, рассмотрите картинки и составьте план ответа по вопросам:

  • О каком процессе рассказывается в вашем тексте?

  • Как выглядит уравнение фотосинтеза?

  • Какие вещества поступают в растение?

  • Какие вещества образуются на свету?

  • Как используются эти вещества?

  • Что дальше происходит с этими веществами?

  • Как называется этот процесс?

  • Благодаря чему происходит этот процесс?

  • Как используется полученная энергия?

  1. Заполните таблицу

3 группа « Зоологи»

Задача: Выявить особенности обмена веществ у животных.

Ход работы:

  1. Прочитайте текст, рассмотрите картинки и составьте план ответа по вопросам:

  • Какие вещества поступают в организм животных?

  • Как называются процессы, при которых поступают вещества?

  • Что с ними происходит с веществами внутри организма?

  • Какие вещества выделяются в результате?

  1. Заполните таблицу

Индивидуальные задания:

  1. Прочитайте текст, рассмотрите картинки и составьте план ответа по вопросам:

  • Перечислите факторы, влияющие на скорость обмена веществ? Составьте схему.

  • Какая зависимость обмена веществ от температуры?

  • Какие бывают группы животных относительно температуры тела? Чем отличается их обмен веществ?

Обмен информацией:

Выступление 1 представителя от каждой группы, заполнение таблицы, схем.

IV. Обобщение:

Значение обмена веществ:

  1. Обеспечение организма энергией и питательными веществами

  2. Рост и развитие

  3. Круговорот веществ в природе

V. Закрепление нового материала:

Тест 

1. Обмен веществ происходит у всех живых организмов.

2.Обмен веществ складывается из двух противоположных процессов.

3.В обмене веществ у растений принимают участие только листья.

4.В растения из окружающей среды поступают кислород, углекислый газ и вода.

5.В обмене веществ у животных принимают участие только органы дыхания и кровеносной системы.

6.В результате фотосинтеза образуются органические вещества и кислород.

7.Теплокровные животные имеют постоянную температуру тела.

8.Змеи и лягушки – это теплокровные животные.

9.Медведь – холоднокровное животное, так как впадает в зимнюю спячку.

10. Зимой у птиц обмен веществ протекает медленно, потому что температура окружающей среды низкая.

11. Активный обмен веществ у птиц и млекопитающих способствовал их широкому распространению на Земле.

12. Обмен веществ и энергии является основным признаком живого организма.

Ответы: 1, 2, 4, 6, 7, 11, 12 — да

V. Подведение итогов урока

Рефлексия:

– Узнали ли вы, что-то новое на уроке?
– Какие знания вы  применили на уроке для понимания новой темы?
– Что произвело на вас наибольшее впечатление?
– Хочется ли узнать что-нибудь еще по этой теме?

Нарисуйте смайл.

VI. Домашнее задание

П. 44 – прочитать, выучить определения

Задание по выбору:

Кроссворд «Обмен веществ», 10 вопросов.

Сообщение «Питание и обмен веществ».

ДИССИМИЛЯЦИЯ И АССИМИЛЯЦИЯ — это… Что такое ДИССИМИЛЯЦИЯ И АССИМИЛЯЦИЯ?

ДИССИМИЛЯЦИЯ И АССИМИЛЯЦИЯ
ДИССИМИЛЯЦИЯ И АССИМИЛЯЦИЯ
(от лат. dissimilis – несходный и assimilis – сходный) – взаимно противоположные процессы, обеспечивающие в единстве непрерывный процесс жизнедеятельности живых организмов; протекают в организме непрерывно, одновременно, в тесной взаимосвязи и составляют две стороны единого процесса обмена веществ. Д. и а. образуют сложную систему, состоящую из цепи взаимосвязанных биохимич. реакций, каждая из к-рых в отдельности является только химической, но к-рые в единстве составляют целое, обладающее биологич. природой. Противоречие Д. и а. определяет динамич. равновесие живого тела. Как открытая система (см. Жизнь), оно должно, постоянно приобретая, столь же непрерывно тратить приобретенную энергию, так, чтобы не увеличивалась энтропия. Д и с с и м и л я ц и я – процесс расщепления в живом организме органич. веществ на более простые соединения – ведет к освобождению энергии, необходимой для всех процессов жизнедеятельности организма. А с с и м и л я ц и я – процесс усвоения органич. веществ, поступающих в организм, и уподобления их органич. веществам, свойственным данному организму, идет с использованием энергии, высвобождающейся при процессах диссимиляции. При этом образуются (синтезируются) соединения, обладающие высокой энергией (макроэргические), к-рые становятся источником энергии, освобождающейся при диссимиляции. Диссимиляция поступающих в организм питательных веществ, в основном белков, жиров и углеводов, начинается с ферментативного расщепления их на более простые соединения – промежуточные продукты обмена веществ (пептиды, аминокислоты, глицерин, жирные кислоты, моносахариды), из к-рых организм синтезирует (ассимилирует) органич. соединения, необходимые для его жизнедеятельности. Все процессы Д. и а. в организме протекают как единое целое. См. Обмен веществ, Жизнь и лит. при этих статьях.

И. Вайсфельд. Москва.

Философская Энциклопедия. В 5-х т. — М.: Советская энциклопедия. Под редакцией Ф. В. Константинова. 1960—1970.

.

  • ДИСПОЗИЦИОНАЛЬНЫЙ ПРЕДИКАТ
  • ДИСТРИБУТИВНОСТИ ЗАКОН

Полезное


Смотреть что такое «ДИССИМИЛЯЦИЯ И АССИМИЛЯЦИЯ» в других словарях:

  • АССИМИЛЯЦИЯ — (лат. assimilatio, от assimilare уподоблять). Уравнение, уподобление, напр., в фонетике уподобление соседних звуков один другому; в физиологии уподобление веществ, поглощенных животным, веществам собственного тела. Словарь иностранных слов,… …   Словарь иностранных слов русского языка

  • ДИССИМИЛЯЦИЯ — [лат. dissimilatio расподобление] лингв. изменение, которое разрушает сходство и подобие звуков в слове. Словарь иностранных слов. Комлев Н.Г., 2006. диссимиляция (лат. dissimilatio расподобление) 1) иначе катаболизм распад сложных органических… …   Словарь иностранных слов русского языка

  • Ассимиляция — (от лат. assimilatio воспроизведение), анаболизм, процесс, в ходе которого из более простых веществ синтезируются более сложные (полисахариды, нуклеиновые кислоты, белки и др.), аналогичные компонентам этого организма и необходимые для его… …   Экологический словарь

  • Ассимиляция — Термин ассимиляция (лат. assimilatio  уподобление) употребляется в нескольких областях знания: Ассимиляция (биология)  совокупность процессов синтеза в живом организме. Ассимиляция (лингвистика)  уподобление артикуляции одного …   Википедия

  • диссимиляция — (лат. dissimilatio расподобление). Замена одного из двух одинаковых или сходных звуков другим, менее сходным в отношении артикуляции с тем, который остался без изменения. Подобно ассимиляции, диссимиляция может быть прогрессивной и регрессивной.… …   Словарь лингвистических терминов

  • Диссимиляция — I ж. Изменение, нарушающее сходство, подобие одинаковых или сходных звуков в слове или в соседних словах; расподобление (в лингвистике). Ant: ассимиляция I II ж. Распад в организме сложных органических веществ, клеток, тканей и т.п. (в биологии) …   Современный толковый словарь русского языка Ефремовой

  • Диссимиляция — I ж. Изменение, нарушающее сходство, подобие одинаковых или сходных звуков в слове или в соседних словах; расподобление (в лингвистике). Ant: ассимиляция I II ж. Распад в организме сложных органических веществ, клеток, тканей и т.п. (в биологии) …   Современный толковый словарь русского языка Ефремовой

  • ассимиляция — (лат. assimilatio уподобление). Уподобление одного звука другому в артикуляционном и акустическом отношениях (ср.: диссимиляция). Ассимиляция возникает у гласных с гласными, у согласных с согласными …   Словарь лингвистических терминов

  • Ассимиляция — I Ассимиляция (от лат. assimilatio)         уподобление, слияние, усвоение. II Ассимиляция (этнографич.)         слияние одного народа с другим с утратой одним из них своего языка, культуры, национального самосознания. Во многих странах в… …   Большая советская энциклопедия

  • Диссимиляция — I Диссимиляция (от лат. dissimilis несходный)         в биологии, противоположная ассимиляции (См. Ассимиляция) сторона обмена веществ (См. Обмен веществ), заключающаяся в разрушении органических соединений с превращением белков, нуклеиновых… …   Большая советская энциклопедия

Метаболизм — Принципы биологии

Метаболизм организма — это сумма всех химических реакций, происходящих в организме. Эти химические реакции делятся на две основные категории:

  • Анаболизм: строительные полимеры (большие молекулы, которые нужны клетке).
  • Катаболизм: разрушение полимеров с высвобождением энергии.

Это означает, что метаболизм состоит из синтеза (анаболизма) и деградации (катаболизма) ( Рисунок 1 ).

Рисунок 1 Катаболические пути — это те пути, которые генерируют энергию за счет разрушения более крупных молекул. Анаболические пути — это те, которые требуют энергии для синтеза более крупных молекул. Оба типа путей необходимы для поддержания энергетического баланса клетки.

Важно знать, что химические реакции метаболических путей не происходят сами по себе. Каждая стадия реакции ускоряется или катализируется белком, называемым ферментом . Ферменты важны для катализирования всех типов биологических реакций — как тех, которые требуют энергии, так и тех, которые выделяют энергию.Вернитесь к главе о ферментах, если вам нужно напоминание по этой теме.

Рассмотрим метаболизм сахара (углевода). Это классический пример одного из многих клеточных процессов, которые используют и производят энергию. Живые существа потребляют сахар в качестве основного источника энергии, потому что молекулы сахара имеют много энергии, хранящейся в их связях. По большей части фотосинтезирующие организмы, такие как растения, производят эти сахара. Во время фотосинтеза растения используют энергию (первоначально солнечного света) для преобразования газообразного углекислого газа (CO 2 ) в молекулы сахара (например, глюкозы: C 6 H 12 O 6 ).Они потребляют углекислый газ и выделяют кислород в качестве побочного продукта. Эта реакция кратко описана как:

6CO 2 + 6H 2 O–> C 6 H 12 O 6 + 6O 2

Вспомните из химии, что сокращение «CO 2 » означает «один атом углерода, ковалентно связанный с двумя атомами кислорода». Вода, «H 2 O» — это два атома водорода, ковалентно связанные с одним атомом кислорода. А «C 6 H 12 O 6 » имеет 6 атомов углерода, 12 атомов водорода и 6 атомов кислорода, которые ковалентно связаны вместе.

Двуокись углерода (СО2) содержит один атом углерода, ковалентно связанный с двумя атомами кислорода. Предоставлено: wikimedia. Глюкоза содержит 6 атомов углерода, 6 атомов кислорода и 12 атомов водорода. Предоставлено: Бен, 2006. Викимедиа. Всеобщее достояние.

Процесс производства глюкозы из диоксида углерода и воды требует затрат энергии, потому что глюкоза содержит больше энергии в своих молекулярных связях, чем диоксид углерода.

Напротив, молекулы-накопители энергии, такие как глюкоза, расходуются на расщепление для использования своей энергии.Реакцию, которая собирает энергию молекулы сахара в клетках, нуждающихся в кислороде для выживания, можно описать обратной реакцией на фотосинтез. В этой реакции расходуется кислород и выделяется углекислый газ в качестве побочного продукта. Реакция резюмируется как:

C 6 H 12 O 6 + 6O 2 -> 6H 2 O + 6CO 2

Обе эти реакции включают много этапов.

Процессы образования и расщепления молекул сахара иллюстрируют два примера метаболических путей.Метаболический путь представляет собой серию химических реакций, в которых исходная молекула изменяется, шаг за шагом, через ряд промежуточных продуктов метаболизма, в конечном итоге давая конечный продукт. В примере метаболизма сахара первый метаболический путь синтезирует сахар из более мелких молекул, а другой путь расщепляет сахар на более мелкие молекулы.

Если не указано иное, изображения на этой странице лицензированы OpenStax по лицензии CC-BY 4.0.

Текст адаптирован из: OpenStax, Концепции биологии.OpenStax CNX. 18 мая 2016 г. http://cnx.org/contents/[email protected]

Метаболизм — Биология муниципального колледжа Маунт-Худ, 101

Метаболизм организма — это сумма всех химических реакций, происходящих в организме. Эти химические реакции делятся на две основные категории:

  • Анаболизм: строительные полимеры (большие молекулы, которые нужны клетке).
  • Катаболизм: разрушение полимеров с высвобождением энергии.

Это означает, что метаболизм состоит из синтеза (анаболизма) и деградации (катаболизма) ( Рисунок 1 ).

Рисунок 1 Катаболические пути — это те пути, которые генерируют энергию за счет разрушения более крупных молекул. Анаболические пути — это те, которые требуют энергии для синтеза более крупных молекул. Оба типа путей необходимы для поддержания энергетического баланса клетки.

Важно знать, что химические реакции метаболических путей не происходят сами по себе. Каждая стадия реакции ускоряется или катализируется белком, называемым ферментом . Ферменты важны для катализирования всех типов биологических реакций — как тех, которые требуют энергии, так и тех, которые выделяют энергию.

Рассмотрим метаболизм сахара. Это классический пример одного из многих клеточных процессов, которые используют и производят энергию. Живые существа потребляют сахар в качестве основного источника энергии, потому что молекулы сахара имеют много энергии, хранящейся в их связях. По большей части фотосинтезирующие организмы, такие как растения, производят эти сахара. Во время фотосинтеза растения используют энергию (первоначально солнечного света) для преобразования газообразного углекислого газа (CO 2 ) в молекулы сахара (например, глюкозы: C 6 H 12 O 6 ).Они потребляют углекислый газ и выделяют кислород в качестве побочного продукта. Эта реакция кратко описана как:

6 CO 2 + 6 H 2 O -> C 6 H 12 O 6 + 6 O 2

Процесс производства глюкозы из диоксида углерода и воды требует затрат энергии, потому что глюкоза содержит больше энергии в своих молекулярных связях, чем диоксид углерода. Это означает, что для продолжения этого процесса требуется подача энергии. Вы, наверное, уже знаете, что энергия для фотосинтеза исходит от солнечного света.

Напротив, молекулы-накопители энергии, такие как глюкоза, расходуются на расщепление для использования своей энергии. Реакцию, которая собирает энергию молекулы сахара в клетках, нуждающихся в кислороде для выживания, можно описать обратной реакцией на фотосинтез. В этой реакции расходуется кислород и выделяется углекислый газ в качестве побочного продукта. Реакция резюмируется как:

C 6 H 12 O 6 + 6 O 2 -> 6 CO 2 + 6 H 2 O

Обе эти реакции включают много этапов.

Процессы образования и расщепления молекул сахара иллюстрируют два примера метаболических путей. Метаболический путь представляет собой серию химических реакций, в которых исходная молекула изменяется, шаг за шагом, через ряд промежуточных продуктов метаболизма, в конечном итоге давая конечный продукт. В примере метаболизма сахара первый метаболический путь синтезирует сахар из более мелких молекул, а другой путь расщепляет сахар на более мелкие молекулы.

Если не указано иное, изображения на этой странице находятся под лицензией CC-BY 4.0 от OpenStax.

Текст адаптирован из: OpenStax, Концепции биологии. OpenStax CNX. 18 мая 2016 г. http://cnx.org/contents/[email protected]

Метаболизм | Очерки биохимии

Фенилкетонурия (ФКУ) и дефицит ацил-КоА-дегидрогеназы со средней длиной цепи (MCADD) — два наиболее часто наследуемых нарушения обмена веществ, которым страдает примерно 1 из 10000 новорожденных в Великобритании.

ФКУ — это аминокислотное заболевание, вызванное дефицитом фермента фенилаланингидроксилазы, вызывающим ферментативный блок.Это приводит к снижению метаболизма аминокислоты фенилаланина, вызывая повышенное накопление в крови и головном мозге. Если не лечить новорожденных, это может вызвать задержку развития или повреждение головного мозга. Лечение начинается рано с диеты с низким содержанием белка, дополненной смесью аминокислот с удаленным фенилаланином. Однако небольшая часть людей с диагнозом ФКУ не отвечает на этот предложенный вид лечения. У этих людей обычно наблюдаются дефекты синтеза дигидроптеридинредуктазы или биоптерина, вызывающие нарушение функции фенилаланингидроксилазы.Эти люди также обычно имеют дефекты тирозингидроксилазы, что может привести к дефициту нейротрансмиттеров. Затем этим пациентам требуются дополнительные добавки с нейротрансмиттерами, а также диета с низким содержанием фенилаланина.

MCADD — это пожизненное состояние, которое возникает из-за мутации ацил-CoA дегидрогеназы со средней длиной цепи (MCAD) при β-окислении жирных кислот. Эта мутация нарушает расщепление жирных кислот со средней длиной цепи в ацетил-КоА.Потеря или недостаточность MCAD снижает окисление жирных ацил-CoA, которые содержат более шести атомов углерода, поскольку первая стадия дегидрирования β-окисления не может происходить. Используя тандемную масс-спектрометрию, можно увидеть, что профиль жирных кислот крови в MCADD показывает накопление C6, C8 и C10: 1. MCADD является основной причиной гипокетотической гипогликемии и может вызывать дисфункцию печени с метаболическим ацидозом, гипераммониемией и внезапной смертью. MCADD особенно опасен во время голодания, когда организм использует запасы гликогена, а свободные жирные кислоты высвобождаются из жировой ткани для получения энергии.Сниженная способность метаболизировать средние жирные кислоты значительно снижает доступность субстратов для кетогенеза, синтеза АТФ и цикла TCA при низкой энергии. Накопление промежуточных продуктов жирных кислот подавляет глюконеогенез, усугубляя гипогликемию. Это накопление может также способствовать сердечно-сосудистым и неврологическим осложнениям, обнаруживаемым в этих условиях. Лечение пациентов с MCADD включает потребление напитков с высоким содержанием сахара и избегание длительных периодов голодания.

Последнее наследственное нарушение обмена веществ, которое мы обсуждаем, встречается гораздо реже и встречается у 1 из 100 000 или 1 50000 новорожденных. Болезнь мочи кленового сиропа (MSUD) возникает из-за дефицита или снижения функции комплекса дегидрогеназы α-кетокислоты с разветвленной цепью (BCKAD). Это приводит к накоплению аминокислот с разветвленной цепью (BCAA), таких как лейцин, изолейцин и валин, в крови и моче. Название болезни происходит от запаха мочи кленового сиропа из-за избытка BCAA.BCAA потребляются в рационе, богатом белком, в таких продуктах, как мясо, рыба, яйца и молоко. Обычно избыточные аминокислоты расщепляются через аминотрансферазы с разветвленной цепью (BCAT) на α-кетокислоты в митохондриях. На второй стадии катаболизма комплекс BCKAD инициирует окислительное декарбоксилирование α-кетокислот, что приводит к образованию ацетоацетата, ацетил-КоА и сукцинил-КоА. Нормальное функционирование катаболизма аминокислот необходимо для синтеза белка, передачи клеточных сигналов и метаболизма глюкозы.BCKAD состоит из четырех субъединиц. Мутации в каталитических компонентах BCKAD снижают его активность и, следовательно, увеличивают уровни BCAA, проявляясь как MSUD и вызывая дисфункцию иммунной системы, скелетных мышц и центральной нервной системы. По мере накопления токсичных метаболитов, таких как молочная кислота и аммиак, функция иммунных клеток подавляется, вызывая нарушение их регуляции. Скелетные мышцы поражены, как показали исследования, которые обнаружили уменьшение диаметра мышечных волокон и поражения миофибрилл у крыс MSUD, однако его механизм полностью не изучен.Нарушение регуляции нервной системы, в частности, поражение головного мозга, было связано с накоплением токсичных метаболитов. Однако исследования показали, что образование азот-активных форм у пациентов с MSUD может вызывать морфологические изменения в клетках глиомы C6. Кроме того, у пациентов с MSUD обнаруживаются маркеры окислительного повреждения белков, ДНК и липидов, возможно, в результате продукции свободных радикалов.

Произошла ошибка при настройке пользовательского файла cookie

Этот сайт использует файлы cookie для повышения производительности.Если ваш браузер не принимает файлы cookie, вы не можете просматривать этот сайт.


Настройка вашего браузера для приема файлов cookie

Существует множество причин, по которым cookie не может быть установлен правильно. Ниже приведены наиболее частые причины:

  • В вашем браузере отключены файлы cookie. Вам необходимо сбросить настройки своего браузера, чтобы он принимал файлы cookie, или чтобы спросить вас, хотите ли вы принимать файлы cookie.
  • Ваш браузер спрашивает вас, хотите ли вы принимать файлы cookie, и вы отказались.Чтобы принять файлы cookie с этого сайта, используйте кнопку «Назад» и примите файлы cookie.
  • Ваш браузер не поддерживает файлы cookie. Если вы подозреваете это, попробуйте другой браузер.
  • Дата на вашем компьютере в прошлом. Если часы вашего компьютера показывают дату до 1 января 1970 г., браузер автоматически забудет файл cookie. Чтобы исправить это, установите правильное время и дату на своем компьютере.
  • Вы установили приложение, которое отслеживает или блокирует установку файлов cookie.Вы должны отключить приложение при входе в систему или проконсультироваться с системным администратором.

Почему этому сайту требуются файлы cookie?

Этот сайт использует файлы cookie для повышения производительности, запоминая, что вы вошли в систему, когда переходите со страницы на страницу. Чтобы предоставить доступ без файлов cookie потребует, чтобы сайт создавал новый сеанс для каждой посещаемой страницы, что замедляет работу системы до неприемлемого уровня.


Что сохраняется в файле cookie?

Этот сайт не хранит ничего, кроме автоматически сгенерированного идентификатора сеанса в cookie; никакая другая информация не фиксируется.

Как правило, в файлах cookie может храниться только информация, которую вы предоставляете, или выбор, который вы делаете при посещении веб-сайта. Например, сайт не может определить ваше имя электронной почты, пока вы не введете его. Разрешение веб-сайту создавать файлы cookie не дает этому или любому другому сайту доступа к остальной части вашего компьютера, и только сайт, который создал файл cookie, может его прочитать.

Новое исследование показывает, как сложный метаболизм мог образоваться из простых предшественников — ScienceDaily

Вся современная жизнь использует энергию для воспроизводства.Во время этого процесса организмы строят и расщепляют более крупные молекулы, такие как жиры и сахара, используя замечательно общий набор реактивных промежуточных молекул-носителей энергии. Эти промежуточные носители энергии (например, АТФ) часто сами по себе не являются строительными блоками, но они позволяют объединить энергию между отдельными реакциями, необходимыми для ускорения клеточного воспроизводства. Одним из классов этих соединений являются тиоэфиры, химические соединения, содержащие высокоэнергетическую связь углерод-сера. В течение некоторого времени предполагалось, что тиоэфиры могут быть одними из самых древних версий таких метаболических реактивных промежуточных продуктов, отчасти потому, что современные организмы все еще используют тиоэфиры, чтобы помочь расщепить сахара и сделать белки из аминокислот.То, как реакционноспособные промежуточные соединения, такие как тиоэфиры, могли образоваться до того, как появилась жизнь или когда ранняя жизнь делала свои первые шаги, остается тайной. Новая работа исследователей из Института наук о Земле (ELSI) при Токийском технологическом институте показывает, что простое соединение, которое можно найти в некоторых современных вулканических газах, — тиокислота (соединение, образованное из органической кислоты и сероводорода, (соединение, в значительной степени ответственное за запах «тухлых яиц» многих горячих источников) — легко вступает в реакцию с простыми серосодержащими тиоловыми соединениями, подобными тем, которые имеют фундаментальное значение для современного метаболизма, с образованием реактивных тиоэфиров, подобных тем, которые обнаруживаются в современной биологии.Эта реакция легко происходит в воде и, возможно, послужила отправной точкой для эволюции более сложной биохимии. В ходе исследования они обнаружили, что, когда они включали в свои реакции железо (которое является наиболее распространенным элементом на Земле и составляет около 5% поверхностного слоя Земли, известного как кора), выход продуктов реакции увеличивается.

Команда предполагает, что это может означать, что энергетическая связь между несколькими реакциями, в которой одна реакция движет вперед другой, может иметь свои корни в химии неживой окружающей среды.Примечательно, что они также обнаружили, что побочный продукт обнаруженной ими реакции может быть использован для создания второго типа универсального соединения, связывающего энергию, которое требуется всем живым существам: кластеров FeS (сокращение от железо-сера). Это небольшие агрегаты, состоящие всего из нескольких атомов железа и серы, которые помогают организмам метаболизировать, перемещая электроны от одной молекулы к другой. Одним из важных примеров такого пути использования кластеров FeS является фотосинтез, который переносит электроны из воды в CO 2 для производства сахаров и кислорода.Таким образом, эта работа дает новое понимание того, как молекулы с высокой энергией и реакции переноса электронов могли возникать естественным образом в процессе раннего развития метаболизма.

Хотя ученые пытались понять происхождение строительных блоков жизни, таких как аминокислоты, нуклеотиды, пептиды и т. Д., В течение некоторого времени прикладывалось мало усилий для понимания того, как передача энергии возникла в химии пребиотиков. Понимание этого обмена энергией может быть столь же важным, как понимание происхождения строительных блоков, поэтому команда ELSI решила поискать реакции, которые могли бы быть связаны друг с другом энергетически.Как отмечает ведущий автор, Себастьян Санден: «Мы уже изучали минералы FeS и знали, насколько легко их образование, поэтому мы хотели посмотреть, сможем ли мы связать эту избыточную потерянную энергию с другой реакцией». Тиокислота, с которой они начали свое исследование, содержит серу, которая, как они знали, должна была реагировать только с железом, чтобы образовались кластеры FeS, которые они уже изучали.

Эксперименты и анализы, которые проводили исследователи ELSI, должны были проводиться в быстрой последовательности, чтобы отслеживать ход реакции.Они разработали методы для этого и, таким образом, смогли определить, насколько быстро эти реакции произошли. Их предварительные эксперименты по получению тиоэфира не прошли так быстро, как они первоначально надеялись, но, добавив катализатор и повысив температуру, они обнаружили, что максимальный выход тиоэфира был получен менее чем за час, а не за несколько дней до внесения этих изменений. .

Команда считает особенно интересным то, что такие реакции могут создавать «каскадные реакции», в результате которых образуются все более и более сложные молекулы: пируват разлагается, помогая образовывать тиоэфир, который затем позволяет пептидам (меньшим родственникам белков) образовываться через новые открыл путь тиоэфира.Команда надеется проверить это экспериментально и создать систему, которая сама по себе может увеличить количество содержащихся в ней компонентов и их сложность, возможно, вплоть до самовоспроизводства. Некоторые современные микробы фактически используют разложение пирувата и образование тиоэфиров с помощью кластеров FeS в своем метаболизме, и возможно, что реакции, обнаруженные командой, повторяют то, как их открыла ранняя пребиологическая или биологическая эволюция. Как говорит ведущий исследователь этой работы, доцент ELSI Шон МакГлинн: «Эта работа обеспечивает новые связи между множественными компонентами пребиотической реакции, которые могли иметь решающее значение для установления раннего энергетического метаболизма на Земле.«

Несмотря на то, что эта работа может пролить новый свет на то, как естественные реакции обмена энергии, возможно, помогли «дать толчок» метаболизму, она также может быть важна для области «зеленой химии», которая занимается поиском наиболее энергетически эффективных и экологически безопасных дружественные методы создания химических соединений. Хотя токсичные тяжелые металлы, такие как кадмий и ртуть, и растворители, такие как хлороформ, часто используются в промышленной органической химии, реакции, обнаруженные этой исследовательской группой, очень эффективны и работают в воде с использованием нетоксичного железа в качестве катализатора.

История Источник:

Материалы предоставлены Токийским технологическим институтом . Примечание. Содержимое можно редактировать по стилю и длине.

природных биомаркеров клеточного метаболизма: биология, методы и A

Содержание

Биохимические, биологические и биофизические основы
Митохондрии и энергетический метаболизм: сети, механизмы и контроль Ильмо Э. Хассинен

Внутриклеточные автофлюоресцентные виды: структура, спектроскопия и фотофизика Нобухиро Охта и Такакадзу Накабаяши

Методы автофлуоресцентной визуализации: основы и приложения
Однофотонная автофлуоресцентная микроскопия Нарасимхан Раджарам и Нирмала Рамануджам

Автофлуоресценция при пожизненной визуализации Майкл Г.Николс, Кристина Уорд, Ляндыша В. Жолудева, Хизер Дженсен Смит и Ричард Холлворт

Поляризационная визуализация аутофлуоресценции клеток Харшад Д. Вишвасрао, Цианру Ю, Курави Хевавасам и Ахмед А. Хейкал

Мониторинг клеточного энергетического метаболизма в реальном времени in vivo Авраам Маевский и Эфрат Барбиро-Микаэли

Триптофан как альтернативный биомаркер клеточного энергетического метаболизма Винод Джотикумар, Юаньшэн Сан и Аммаси Периасами

Альтернативные подходы к оптическому определению окислительно-восстановительного состояния Yi Yang

Природные биомаркеры для биохимических и биологических исследований
Пространственно-временное определение активности NADH-связанных ферментов в метаболизме отдельных клеток V.Кришнан Рамануджан

NAD (P) H и FAD как биомаркеры запрограммированной клеточной смерти Hsing-Wen Wang

Мониторинг дифференцировки стволовых клеток в сконструированных тканях Кайл П. Куинн и Ирен Георгакуди

Автофлуоресценция как инструмент диагностики в медицине и здравоохранении
Исследование физиологии и патологии сердечно-сосудистой системы с помощью автофлуоресценции Альзбета Марчек Чорватова

Перспективы автофлуоресценции в диагностике рака Lin Z.Ли и Наннан Сун

Динамическое изображение аутофлуоресценции внутриклеточного кофермента в интактных островках поджелудочной железы Алан К. Лам и Джонатан В. Рошело

Автофлуоресцентная диагностика офтальмологических заболеваний Дитрих Швейцер

Влияние патогенов на энергетический метаболизм в клетках-хозяевах Márta Szaszák и Jan Rupp

Индекс

Метаболизм во времени и пространстве — исследуя границы биологии развития | Развитие

Около века назад Отто Варбург заметил, что опухоли потребляют исключительно высокий уровень глюкозы и имеют тенденцию превращать пируват в лактат независимо от наличия кислорода.Это явление, известное как аэробный гликолиз или эффект Варбурга, идеально подходит для поддержки роста и биосинтеза. Джаред Раттер (Университет штата Юта, Солт-Лейк-Сити, США) подчеркнул важность эффекта Варбурга, описывая, как его лаборатория открыла молекулярную идентичность митохондриального переносчика пирувата (MPC). Этот консервативный белковый комплекс отвечает за транспортировку пирувата в митохондриальный матрикс и представляет собой ключевое метаболическое звено между гликолизом и окислительным фосфорилированием (Bricker et al., 2012). В соответствии с наблюдениями Варбурга лаборатория Раттера обнаружила, что многие виды рака демонстрируют снижение экспрессии MPC1, что приводит к усиленному гликолитическому состоянию и увеличению роста опухоли (Schell et al., 2014). Кроме того, Руттер также описал неопубликованные данные, которые показывают, что MPC способствует пролиферации стволовых клеток в кишечнике, тем самым делая MPC ключевым регулятором развития.

Результаты лаборатории Раттера были поддержаны в беседах Николь Прайор (лаборатория Aulehla, EMBL, Гейдельберг, Германия) и Оливье Пурке (Гарвардская медицинская школа, Кембридж, США), которые описали градиент гликолиза от заднего к переднему в пресомитной мезодерме. (PSM) хвостовой зачатки позвоночных (Bulusu et al., 2017; Огинума и др., 2017). Используя комбинацию метаболомики, транскриптомики и сенсора FRET пирувата, их лаборатории обнаружили, что задний PSM демонстрирует повышенные уровни гликолитического потока и продукции лактата, предполагая, что он полагается на аэробный гликолиз для поддержания недифференцированного состояния. В соответствии с этой возможностью, обе группы определили, что ингибирование гликолитического потока в PSM приводит к аномалиям развития. Однако цель гликолиза в этой области остается неясной, поскольку неопубликованные данные из лаборатории Aulehla показали, что только минимальное количество глюкозы необходимо для поддержки формирования мезодермального паттерна.Как объяснил Прайор, следовые количества глюкозы, использованные в этом эксперименте, не влияют на накопление гликолитических метаболитов, предполагая, что аэробный гликолиз в PSM имеет неканоническую функцию. Один ключ к пониманию того, как аэробный гликолиз способствует развитию PSM независимо от биосинтеза, принадлежит группе Pourquié, которая продемонстрировала, что градиент передачи сигналов FGF / MAPK, присутствующий в этой ткани, регулирует транскрипцию нескольких гликолитических ферментов. Интересно, что FGF также контролирует передачу сигналов Wnt в PSM, а ингибирование гликолиза в этой ткани фенокопирует потерю передачи сигналов Wnt в хвостовой зачатке.Следовательно, группа Pourquié проверила возможность того, что FGF влияет на передачу сигналов Wnt посредством гликолитического потока, и действительно обнаружила, что мишени Wnt подавляются после ингибирования гликолиза. Вместе эти данные подтверждают модель, в которой передача сигналов FGF устанавливает гликолитический градиент в развивающейся хвостовой почке, который, в свою очередь, необходим для поддержания передачи сигналов Wnt.

В дополнение к недавно обнаруженной взаимосвязи между аэробным гликолизом, FGF и передачей сигналов Wnt, Alena Krejci (University of South Bohemia, Ceske Budejovice, Czech Republic) сообщила, что сигнальный путь Notch также способен способствовать гликолитическому состоянию.Группа Крейчи обнаружила, что многие метаболические гены Drosophila содержат сайты связывания для Notch-специфического супрессора фактора транскрипции лысого, и что короткий импульс активности Notch в клетках культуры ткани S2N вызывает длительное метаболическое ремоделирование в направлении эффекта Варбурга (Slaninova et al. ., 2016). Более того, экспрессия нескольких генов, участвующих в метаболизме глюкозы, регулируется Notch в крыловом диске, и Notch может использовать этот механизм для стимулирования роста этой развивающейся ткани.Принимая во внимание, что путь Notch активен в других контекстах, в которых клетки или ткани обнаруживают повышенные уровни гликолиза, эти наблюдения предполагают, что Notch может регулировать аэробный гликолиз в различных условиях.

Роль эффекта Варбурга в развитии была дополнительно исследована Джейсоном Теннессеном (Университет Индианы, Блумингтон, США), чья лаборатория обнаружила, что личинки дрозофилы используют аэробный гликолиз для синтеза предполагаемого онкометаболита L-2-гидроксиглутарата (Li et al., 2017). Поскольку это соединение влияет на метилирование гистонов и ДНК, оно может действовать как метаболический сигнал во время личиночного развития. При рассмотрении в контексте презентаций Прайора и Пуркье наблюдения лаборатории Теннессена подчеркивают, что аэробный гликолиз потенциально может влиять на развитие независимо от биосинтеза.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *