Примеры обмена веществ: 2. Обмен веществ. Пластический и энергетический обмен

Содержание

Генетический тест «Обмен веществ» | Государственное бюджетное учреждение здравоохранения Детская городская клиническая больница (ГБУЗ ДГКБ г. Краснодара)

Пример заключения
«Генетика обмена веществ»

Разработка способов индивидуализации фитнес-программ по контролю веса, основанных на данных генетического анализа является очень популярным направлением. Некоторые из таких первых подходов уже запатентованы и начинают применяться на практике.

Среди генетических факторов, которые могут повлиять на правильный выбор диеты и интенсивности физических нагрузок, чаще всего анализируют нуклеотидные полиморфизмы генов FABP2, PPARG, ADRB2 и ADRB3. Эти гены, а точнее их генетическая вариабельность, значительно влияют на то, как быстро и эффективно усваиваются питательные вещества, поступающие с пищей, а значит, они могут препятствовать, или помогать достижению и поддержке оптимального веса. Эти генетические вариации (полиморфизмы) не являются патогенными мутациями, они достаточно широко распространены, но, располагая информацией об их наличии или отсутствии, можно точнее оценить индивидуальные особенности своего организма.

Так, например, ген FABP2 кодирует белок, связывающий и транспортирующий жирные кислоты в кишечнике. Нуклеотидный вариант («G» или «А») в точке полиморфизма rs1799883 в этом гене приводит к синтезу разных вариантов белка. Один из них лучше связывается с жирными кислотами и, соответственно, люди с таким вариантом гена (генотип GA или AA полиморфизма rs1799883) эффективней усваивают жиры из потребляемой пищи, имеют более высокий индекс массы тела (ИМТ) по сравнению с обладателями альтернативного варианта гена FABP2. Таким пациентам для поддержания оптимального веса рекомендуется питание с пониженным содержанием жиров.

Ген PPARG, кодирующий гамма-рецептор, активируемый пролифератором пероксисом, отвечает за процессы окисления жирных кислот. Он также влияет на потребность мышечной ткани в глюкозе и ее чувствительность к инсулину. Менее благоприятный вариант полиморфизма rs1801282 (часто называемый как Pro12Ala) приводит к пониженной активности рецептора и, соответственно, к повышению уровня общего холестерина, снижению уровня триглицеридов и повышению чувствительности тканей к инсулину.

Два других популярных гена ADRB2 и ADRB3 кодируют варианты бета-адренергических рецепторов. Встроенные в цитоплазматическую мембрану клетки, они имеют высокую степень сродства к адреналину и регулируют повышение или понижение активности иннервируемой ткани или органа. Активация рецепторов вызывает увеличение интенсивности гликогенолиза в мышцах, увеличение интенсивности секреции инсулина, глюкагона. Полиморфизмы rs1042714 и rs4994 в этих генах влияют на эффективность кодируемых ими рецепторов. При менее благоприятных вариантах легче набирается избыточный вес, а снизить его удается только при более интенсивных тренировках.

Таким образом, информация по вышеуказанным генетическим полиморфизмам может быть весьма ценной для оптимизации усилий по поддержанию веса и других важных показателей в норме. Варианты генов ADRB2 и ADRB3 могут подсказать то, насколько высокоинтенсивными должны быть физические нагрузки для достижения оптимального результата по коррекции веса. А полиморфизмы генов FABP2 и PPARG позволяют оптимизировать профиль питания.

Тест для определения генетических полиморфизмов
«ОБМЕН ВЕЩЕСТВ»

Результаты теста позволяют подобрать индивидуальную диету при снижении веса, а также определить рекомендуемую интенсивность и тип физических нагрузок.

Как работает диализ?

Диализ удаляет из организма продукты обмена веществ и жидкости, которые ваши почки не в состоянии удалить. Целью диализа также является поддержание баланса организма путем корректировки уровней различных токсических веществ в крови. Без диализа все пациенты с неработающими почками умерли бы от скопления токсинов в организме.

Принципы диализа

Существует два типа диализа: перитонеальный диализ и гемодиализ. Какой бы вариант лечения не был выбран, цели диализа очень похожи: диализ предназначен для замены основных почечных функций. Цели терапии: удаление продуктов обмена веществ, удаление лишней жидкости и поддержание сбалансированного количества химических соединений (электролитов) и других веществ в организме. Для эффективного диализа требуется: полупроницаемая мембрана, подача крови, диализный раствор и метод удаления лишней жидкости.

.

 

 

Полупроницаемая мембрана

В процессе диализа полупроницаемая мембрана отделяет кровь от диализного раствора. Эта мембрана пропускает через себя только определенные вещества. Она позволяет удалить продукты обмена веществ, воду, электролиты и другие вещества из крови в диализный раствор (и иногда в другом направлении) посредством процесса, называемого диффузией. Перемещение продуктов жизнедеятельности и других веществ зависит от проницаемости мембраны, размера и структуры различных веществ, состава диализного раствора и подачи крови к мембране.

Кровоснабжение

Чем эффективнее подача крови к мембране, тем выше качество диализной терапии. При гемодиализе подача крови может контролироваться диализным аппаратом.

Диализирующий раствор

В случае применения любого из двух методов диализа диализирующий раствор обеспечивает удаление из крови продуктов обмена веществ. Кроме этого, он содержит определенные вещества, помогающие корректировать дисбаланс, являющийся результатом почечной недостаточности.

Удаление жидкости

Удаление жидкости при гемодиализе достигается путем очень разных процессов (в отличие от перитонеального диализа). При гемодиализе диализный аппарат использует разницу давлений, чтобы спровоцировать жидкость выходить из крови через мембрану в диализирующий раствор. При перитонеальном диализе в диализном растворе используется глюкоза. Это дает эффект стимулирования перемещения избыточной жидкости из крови в диализный раствор, который периодически сливают. Цель диализа

Цель диализа

Какой бы метод диализа не использовался, он преследует следующие цели: удаление продуктов обмена веществ, удаление лишней жидкости, корректировка электролитного дисбаланса и корректировка уровня pH организма.

Ассимиляция и диссимиляция – две стороны обмена веществ

Ст. 96

Рассмотрите рис. 67. Какие организмы используют для жизнедеятельности готовые органические вещества, а какие – создают их из неорганических соединений? За счет каких процессов это происходит?

Автотрофные организмы, или автотрофы, синтезируют в клетках своего тела органические вещества из неорганических.

Автотрофные организмы, или автотрофы, синтезируют в клетках своего тела органические вещества из неорганических.

Ст. 99

Вопросы и задания

1. Какие две группы реакций составляют обмен веществ?

Обмен веществ и превращение энергии состоит из двух взаимосвязанных и противоположных процессов – ассимиляции и диссимиляции.

2. Охарактеризуйте процессы анаболизма и катаболизма. Какова их взаимосвязь?

Ассимиляция, анаболизм или пластический обмен, – это совокупность реакций синтеза высокомолекулярных органических веществ из низкомолекулярных органических или неорганических, сопровождающихся поглощением энергии за счёт распада молекул АТФ.

Диссимиляция, катаболизм или энергетический обмен, – это совокупность реакций распада высокомолекулярных органических веществ до низкомолекулярных органических или неорганических, сопровождающихся выделением энергии и запасанием её в синтезируемых молекулах АТФ.

3. Какие вы знаете типы обмена веществ? Приведите примеры организмов, отличающихся по использованию источников энергии и кислорода, необходимого для обмена веществ. Какова роль этих организмов в природе?

По способу получения энергии, питания и синтеза органических веществ все организмы разделяют на автотрофные и гетеротрофные.

Автотрофные организмы синтезируют в клетках своего тела органические вещества из неорганических. К автотрофам принадлежат все зелёные растения и цианобактерии. Автотрофно питаются и хемосинтезирующие бактерии, использующие энергию, которая выделяется при окислении неорганических веществ, например серы, железа, азота.

Гетеротрофные организмы используют только готовые органические вещества. Источником энергии для них служит энергия, запасённая в органических веществах и выделяющаяся в клетке при их распаде и окислении. К гетеротрофам принадлежат все животные, грибы и большинство бактерий.

Автотрофные и гетеротрофные организмы связаны между собой процессами обмена веществ и превращения энергии. Самая важная группа организмов – фотоавтотрофы. Они способны синтезировать первичные органические вещества из неорганических за счёт энергии света в результате фотосинтеза. Вторая группа – хемоавтотрофные организмы, обеспечивающие себя питательными веществами в результате хемосинтеза.

4. За счёт какой энергии происходит синтез молекулы АТФ?

Синтез АТФ происходит за счёт энергии Солнца.

5. Почему АТФ можно назвать ключевым источником энергии в реакциях обмена веществ? На какие процессы расходуется АТФ?

АТФ является основным веществом, обеспечивающим энергетические процессы в клетке: аккумулирует энергию в процессе энергетического обмена и высвобождает в процессе пластического обмена.

Эта энергия расходуется в процессе пластического обмена на синтез органических веществ, специфичных для каждого организма. Часть энергии в процессе обмена веществ постоянно теряется в виде тепла, поэтому организмам необходим постоянный приток энергии из внешней среды.

6. Назовите основной источник энергии на Земле. В результате какого процесса аккумулируется эта энергия?

Основным источником энергии на Земле является энергия Солнца. Клетки зелёных растений и цианобактерий в процессе фотосинтеза аккумулируют солнечную энергию, превращая её в энергию химических связей АТФ, а далее в энергию химических связей молекул синтезированных органических веществ.

Кратко об обмене веществ | Библиотека sportivnoepitanie.ru

Хороший обмен веществ, плохой обмен веществ, стимулирование или ускорение обмена веществ и т.п. Данные понятия на слуху у каждого, при этом употребляем мы их чаще всего, не осознавая на самом деле, что же они значат, и трактуем их неправильно, поскольку обмен веществ – это далеко не процесс пищеварения, как все полагают.

Обмен веществ или по-другому метаболизм является основой всех жизненно важных процессов, протекающих в нашем теле. Под метаболизмом, грубо говоря, понимают все биохимические процессы, происходящие внутри клеток. Другими словами: то, из чего состоит наша пища, усваивается внутри клеток, т.е. распадается и используются для построения чего-то нового.

Наш организм заботится о себе сам, используя поступившие с пищей макро- и микроэлементы, витамины и минералы или прибегая к помощи уже имеющихся резервов. Все это необходимо для обеспечения надлежащей работы всех систем и органов и оптимального протекания всех процессов. При этом особую роль в обмене веществ играют гормоны и ферменты. Именно нервная и гормональная системы организма регулируют все обменные процессы. Влияют на метаболизм и факторы окружающей среды, к примеру, температура. При этом самым важным органом для всех обменных процессов является печень.

​Обмен веществ – это не процесс пищеварения

Чтобы должным образом выполнять все свои задачи, наш организм нуждается в энергии. Ее источниками являются такие макронутриенты, как углеводы, жиры и белки, которые поступают с продуктами питания.

Безусловно, процесс пищеварения в какой-то мере является предпосылкой для обмена веществ, поскольку именно в желудке и кишечнике питательные вещества расщепляются на составляющие: углеводы – до простых сахаров, белки или тот же протеин – до аминокислот, жиры – до жирных кислот и глицеридов. Происходит это в силу того, что кишечник в состоянии усваивать нутриенты только в расщепленной форме, которая способствует их последующему впитыванию в кишечнике и всасыванию в кровь.

Кровоток выступает в роли своеобразного распределителя питательных веществ во все клетки организма. Именно поэтому, когда речь заходит об обмене веществ, имеется в виду процесс, наступающий после пищеварения, всасывания в кровоток и попадания в клетки, т.е. процесс, происходящий внутри клетки.

Основные фигуранты обмена веществ: углеводы, белки, жиры, минералы

Существуют различные виды обмена веществ, в зависимости от того, что перерабатывается:

  • Углеводный обмен

    В процессе пищеварения сложные углеводы, поступающие с пищей, расщепляются до простых сахаров. Молекулы сахара попадают через кровь в клетки, где собственно и происходит углеводный обмен. Из простых сахаров наше тело получает энергию. В случае если, энергии достаточно, они накапливаются в печени и мышцах, соединяясь снова в полисахариды.

  • Белковый обмен

    В процессе расщепления белка получаются аминокислоты, которые также через кровь попадают в клетки. Там они служат либо источником «топлива», либо материалом для построения мышц, а также образования гормонов и ферментов. Именно поэтому самым популярным продуктом в спортивном питании является протеин.

  • Жировой обмен

    Жир используется в качестве источника энергии, а также как основной накопитель энергии. Кроме того, он участвует в образовании гормонов и сигнальных веществ, а то, в чем наше тело не нуждается, откладывается в жировых клетках на «черный день».

  • Обмен минералов

    В качестве примера можно привести обмен кальция и фосфора, участвующих в укреплении костной и зубной ткани. Кроме того, ионы кальция незаменимы при обеспечении работы мышц.

Анаболический и катаболический обмен веществ

В связке с обменом веществ часто используются понятия анаболизм и катаболизм, которые являются формами метаболизма.

  • Анаболизм

    Так называют процесс образования веществ в организме всех живых существ. В качестве примера можно привести углеводный обмен: часть простых сахаров, проникающих в клетки из кровотока, снова образуют в печени и мышцах полисахариды и накапливаются в них именно в такой форме.

    Часто под анаболизмом в узком смысле понимают белковый обмен на уровне мышечной ткани.

  • Катаболизм

    Под катаболизмом понимают расщепление сложных веществ до простых с целью производства энергии. Другими словами: накапливаемые питательные вещества, в случае острой необходимости, распадаются на составляющие и используются в качестве источника энергии.

    В условиях анаболзизма простые сахара соединяются до полисахаридов и накапливаются в печени и мышцах, а в условиях катаболизма они расщепляются до глюкозы и используются как топливо для мышц.

  • Нарушение обмена веществ

    Нарушение обмена веществ происходит тогда, когда усвоение некоторых веществ протекает не так как следует. Такие процессы провоцируют развитие различных заболеваний. К примеру, формирование сахарного диабета связано с нарушением углеводного обмена.

  • Обмен веществ в покое

    Человек нуждается в большом количестве энергии для поддержания оптимальной работы всех систем организма в любом состоянии, в первую очередь состояния покоя. Именно поэтому существует такое понятие, как обмен веществ в состоянии покоя, который генетически обусловлен. Не зря есть люди, у которых от рождения быстрый обмен веществ, что позволяет им питаться как угодно и при этом не переживать за лишние килограммы, поскольку хороший метаболизм позволяет им это делать. Таких людей можно назвать везунчиками, в отличие от тех, кто изначально страдает от того, что обмен веществ настолько медленный, что даже при условии правильного питания тяжело следить за своим весом. Таким образом, данный процесс различен от человека к человеку и варьируется от 800 до 4700 ккал, сжигаемых в состоянии покоя.

Что влияет на обмен веществ?

  • Половая принадлежность

    В основном у мужчин мышечной массы больше, чем жировых отложений, поэтому чаще всего у них более быстрый обмен веществ, чем у женщин.

  • Возраст

    Как известно, сухая мышечная масса всегда сжигает больше калорий, чем жировая ткань. Поскольку по мере взросления объем мышц сокращается, снижается и скорость сжигания калорий и соответственно замедляется метаболизм. Чтобы предупредить наступление таких процессов, необходимо по возможности больше двигаться и тренироваться, особенно актуально это для всех, кому уже исполнилось 25 лет.

  • Генетическая предрасположенность

    Некоторым везет с рождения и у них быстрый обмен веществ. Такие люди даже не задумываются о том, что едят, поскольку хороший метаболизм справляется со всем, чтобы они не съели. Но это вовсе не значит, что те, кому не так посчастливилось, должны смириться с реальностью и ничего не делать, чтобы улучшить положение дел. В помощь людям с медленным метаболизмом существуют нагрузки, направленные на увеличение силы и выносливости, что значительно помогает ускорить обмен веществ.

  • Жизненные обстоятельства

    Некоторые жизненные обстоятельства могут оказать влияние на метаболизм. К примеру, прием медикаментов, в особенности тех, которые направлены на борьбу с депрессией, может спровоцировать замедление метаболизма. Такой же эффект оказывает пропуск отдельных приемов пищи, а также голодание.

    Если вы пропускаете прием пищи, ваше тело переходит в «режим выживания». В таких условиях замедляется обмен веществ с целью экономии калорий, поскольку существует нехватка продуктов питания, из которых можно черпать энергию для работы. Поэтому ни в коем случае нельзя практиковать такую схему питания и стараться питаться маленькими каждые два-три часа, полезные перекусы здесь являются очень кстати.

Итак, обмен веществ – это чрезвычайно сложное сплетение отдельных процессов внутри каждой клетки, от которых зависит надлежащее функционирование всех систем и органов нашего тела. Если обмен веществ нарушен, страдает организм, поэтому крайне важно поддерживать правильный метаболизм. В случае если, у вас уже есть проблемы, то прочитайте нашу статью о том, как повлиять на обмен веществ.

Протеин

Купить

Спортивные батончики

Купить

Спортивные батончики

Купить

Витамины и минералы

Купить

FIT KIT

Купить

BombBar

Купить

Chikalab

Купить

Maxler

Купить

Optimum Nutrition

Купить

VP laboratory

Купить

Universal Nutrition

Купить

Optimum Nutrition

Купить

FitaFlex

Купить

BSN

Купить

Optimum Nutrition

Купить

FIT-Rx

Купить

Ответ §10. Обмен веществ и энергии

85) Сформулируйте и запишите определение

  

Ответ: Обмен веществ – это получение организмом из внешней среды нужных веществ и удаление из организма во внешнюю среду ненужных веществ.

 

86) Каково значение обмена веществ для живого организма?

 

 

87) Какие процессы происходят в хлоропластах и митохондриях клетки?

 

  • Ответ: В хлоропластах – синтез органических веществ, из неорганических на свету (световой день), при использовании воды и углекислого газа. Побочный продукт – кислород (О2).

    В митохондриях – происходит распад органических веществ и синтез энергии.

 

88) Заполните схему «Обмен веществ у животных»

 

  • Ответ:

    Вещества, образовавшиеся в результате обмена веществ:

    Вода

    Углекислый газ

    Продукты распада

     ↓

    Вещества, поступающие в организм:

    Кислород

    Белки

    Жиры

    Углеводы

    Вода

    Минеральные соли

     ↓

    Процессы, происходящие при обмене веществ:

    Процессы жизнедеятельности

     

                                            

                                                                                        

 

89) Заполните схему «Обмен веществ у растений»

 

  • Ответ:

    Вещества, поступающие в организм:

    Кислород

    Углекислый газ

    Свет

    Вода, с растворенными веществами

     ↓

    Вещества, образовавшиеся в результате обмена веществ:

    Углекислый газ

    Кислород

    Поры воды

     ↓

    Процессы, происходящие при обмене веществ:

    Дыхание

    Фотосинтез

     

                                            

                                                                                      

 

90) Дайте определения

 

  • Ответ: Теплокровные животные – это животные, температура тела которых не зависит от температуры окружающей среды.

    Холоднокровные животные – это животные, температура тела которых зависит от температуры окружающей среды.

 

91) Приведите примеры животных, которые относятся к этим группам

 

  • Ответ: Теплокровные: лев, волк, человек, медведь

    Холоднокровные: окунь, лягушка, черепаха


Демиелинизирующие заболевания нервной системы

Неврологическое отделение

Демиелинизирующие заболевания – аутоиммунные болезни, при которых разрушается миелин белого вещества центральной или периферической нервной системы. Заболевание вызвано взаимодействием внешних (вирусы, инфекции, интоксикации, особенности диеты, стресс, плохая экология) и наследственных факторов.

Наиболее распространенным демиелинизирующим заболеванием является рассеянный склероз, характеризующийся поражением сразу нескольких отделов центральной нервной системы.

К демиелинизирующим заболеваниям относятся:

  • острый рассеянный энцефаломиелит;
  • диффузно-диссеминированный склероз;
  • острый оптиконевромиелит, концентрический склероз.
Демиелинизирующими заболеваниями часто страдают и молодые трудоспособные люди.

Причины возниконовения:

  1. Иммунная реакция на белки, которые входят в состав миелина. Эти белки начинают восприниматься иммунной системой как чужеродные и подвергаются ее атаке, в результате чего происходит их разрушение. Это самая опасная причина возникновения заболевания. Толчком к запуску такого механизма может быть инфекция либо врожденные особенности иммунитета: рассеянный энцефаломиелит, рассеянный склероз, синдром Гийена-Барре, ревматические болезни и инфекции в хронической форме.
  2. Нейроинфекция: некоторые вирусы могут поражать миелин, в результате чего происходит демиелинизация головного мозга.
  3. Сбой в механизме обмена веществ. Данный процесс может сопровождаться нарушением питания миелина и последующей его гибелью. Это характерно для таких патологий, как заболевания щитовидной железы, сахарный диабет.
  4. Интоксикация химическими веществами различного характера: алкогольными, наркотическими, психотропными сильного действия, отравляющими веществами, продуктами лакокрасочного производства, ацетоном, олифой, либо отравление продуктами жизнедеятельности собственного организма: перекиси, свободные радикалы.
  5. Паранеопластические процессы – патологии, которые являются осложнением опухолевых процессов. Последние исследования подтверждают, что в запуске механизма данного заболевания играют важную роль взаимодействия факторов окружающей среды и предрасположенность наследственного характера. Установлена связь между географическим положением и вероятностью возникновения заболевания. Кроме того, важную роль играют вирусы (краснуха, корь, Эпштейна-Барра, герпес), бактериальные заражения, привычки питания, стрессы, экология.

Диагностика демиелинизирующих заболеваний:

Диагноз ставится в случае обнаружения при магнитно-резонансной томографии головного и спинного мозга очагов повышенной интенсивности круглой или овальной формы. Посредством МРТ можно диагностировать развитие атрофии мозга, нарушение проведения импульсов в зрительных путях, стволе мозга и спинном мозге. Деструкцию миелина и аксональную дегенерацию можно выявить при помощи электронейромиографии.
Также проводятся иммунологические исследования (высокая концентрация IgG свидетельствует о демиелинизирующем процессе).

Лечение:

Мероприятия по лечению демиелинизирующих заболеваний бывают специфические и симптоматические. Новые исследования в медицине позволили добиться хороших успехов в специфических методах лечения. Бета-интерфероны считаются одними из самых эффективных препаратов: к ним относятся ребиф, бетаферон, аванекс. Клинические исследования бетаферона показали, что его применение снижает на 30% темпы прогрессирования заболевания, предотвращает развитие инвалидности и уменьшает частоту обострений.
Специалисты все чаще отдают предпочтение методу внутривенного введения иммуноглобулинов (биовен, сандоглобулин, веноглобулин). Таким образом проводится лечение обострений данного недуга. Более 20 лет назад была разработана новая, достаточно эффективная методика лечения демиелинизирующих заболеваний – иммунофильтрация ликвора. В качестве средств специфического лечения применяются кортикостероиды, плазмаферез, цитостатики. Также широко применяются ноотропы, нейропротекторы, аминокислоты, миорелаксанты.

Информация для пациентов и их родственников

Правила госпитализации в стационар

Услуги и цены отделения

Нарушение водного обмена — причины появления, при каких заболеваниях возникает, диагностика и способы лечения

ВАЖНО!

Информацию из данного раздела нельзя использовать для самодиагностики и самолечения. В случае боли или иного обострения заболевания диагностические исследования должен назначать только лечащий врач. Для постановки диагноза и правильного назначения лечения следует обращаться к Вашему лечащему врачу.

Нарушение водного обмена: причины, заболевания, при которых развивается, методы диагностики и лечения.

Определение

Больше всего воды содержится в организме младенцев – до 86%. Затем ее уровень постепенно начинает снижаться, достигая минимума у людей пожилого возраста.

Вода работает как растворитель, составляет основу биологических сред, является участником различных биохимических реакций, терморегуляции и выполняет множество других функций.

Каждую секунду наш организм теряет определенное количество воды с дыханием в виде паров. Другими путями элиминации жидкости из организма являются потоотделение, выработка ферментов в желудочно-кишечном тракте.

Однако наибольшее количество воды у здорового человека выводится из организма почками.

В процессе прохождения крови через почки в мочу поступает вода, минеральные и органические вещества, которые не требуются организму по причине своей вредности или избыточности.

Для компенсации потерь жидкости организму требуется ее поступление извне. Естественное восполнение воды происходит за счет питья и еды. Внутривенное введение используют при тяжелом обезвоживании для быстрого восполнения потерь жидкости или невозможности употребления воды и пищи через рот.

Жидкость в нашем организме условно подразделяется на внутриклеточную и внеклеточную. Внутриклеточная жидкость, как следует из названия, присутствует внутри клетки и отграничена полупроницаемой мембраной от окружающего клетку пространства. Вне клетки жидкость находится в межклеточном пространстве и внутри кровеносных и лимфатических сосудов.

Под водным балансом в организме следует понимать не просто общее количество воды, но и ее распределение между перечисленными структурами, что напрямую влияет на жизнедеятельность органов и тканей человека.

Разновидности нарушения водного обмена

В зависимости от общего содержания воды в организме человека нарушения водного обмена можно разделить на дегидратацию (уменьшение общего количества воды) и гипергидратацию (избыток воды).

Дегидратация проявляется уменьшением количества отделяемой мочи, сухостью слизистых оболочек, часто сопровождается выраженным чувством жажды, снижением эластичности кожи, в более тяжелых случаях развивается клиническая картина поражения тех или иных органов, в первую очередь – нервной системы в виде общей слабости, сонливости, нарушения или потери сознания.

Избыток воды в организме, напротив, проявляется образованием периферических отеков, в первую очередь – отека подкожно-жировой клетчатки, а также накоплением жидкости в клетках, межклеточном пространстве и различных полостях организма: в плевральной полости, брюшной и т.д.

Отдельно выделяют изменение количества воды в сосудистом русле: состояния гиповолемии (недостаточного объема крови) и гиперволемии (избыточного объема крови).

Возможные причины нарушения водного обмена

Выше были рассмотрены основные пути поступления и выведения жидкости из организма. Исходя из этого, становится понятно, что заболевания почек, сопровождающиеся повышенным мочеотделением, приводят к дегидратации, а поражения почек с невозможностью выполнения ими функции фильтрации – к гипергидратации.

Поражения желудочно-кишечного тракта, которые протекают с выраженной многократной рвотой и диареей, могут стать причиной нарушения водного баланса из-за избыточной потери жидкости.

В регуляции водного обмена важную роль играет эндокринная система. Так, повышение концентрации антидиуретического гормона приводит к задержке жидкости в организме, а увеличение выработки предсердного натрийуретического гормона – к ее усиленному выведению. Помимо этого, опосредованно через изменение концентрации солей в организме на водный баланс влияют и другие гормоны, например альдостерон.

Важно помнить, что глюкоза является осмотически активным веществом, способным притягивать воду. В случае избыточного количества глюкозы в крови, например при сахарном диабете, она начинает выделяться с мочой и увлекает за собой воду, что также приводит к развитию выраженного обезвоживания.

При каких заболеваниях развиваются нарушения водного обмена

Нарушения водного обмена могут возникать при различных заболеваниях почек и, как правило, являются признаками почечной недостаточности. При остро развившемся нарушении функции почек, например, при шоке, отравлении химическими веществами, некоторых воспалительных заболеваниях происходит, как правило, задержка воды в организме (гипергидратация). В то время как хронически развивающиеся болезни почек могут сопровождаться как гипергидратацией, так и гипогидратацией (в зависимости от стадии процесса).

Одной из частых причин хронической болезни почек является артериальная гипертензия и сахарный диабет.

К другим эндокринным заболеваниям, приводящим к выраженной дегидратации, относится несахарный диабет – группа заболеваний, в основе которых лежит нарушение работы в системе антидиуретического гормона. Врожденная дисфункция коры надпочечников, или адреногенитальный синдром может сопровождаться выраженными нарушениями баланса солей в организме и нарушением обмена жидкостей.

Острые кишечные инфекции, хронические расстройства питания, сопровождающиеся диареей и рвотой, некоторые врожденные заболевания желудочно-кишечного тракта у детей, такие как пилоростеноз, часто приводят к обезвоживанию и нарушению водно-солевого баланса организма.

К каким врачам обращаться при появлении симптомов нарушения водного обмена

Среди заболеваний, приводящих к нарушению жидкостного обмена, присутствуют расстройства самых различных органов и систем, требующие конкретных видов обследования и лечения. Поэтому в случае появления симптомов нарушения водного обмена следует вначале обратиться к специалисту широкого профиля, такому как терапевт или педиатр. По мере проведения клинического и лабораторно-инструментального обследования определяется система органов, причастная к развитию водных нарушений, поэтому может потребоваться консультация эндокринолога, нефролога, гастроэнтеролога, инфекциониста и т.д.

Диагностика и обследования при нарушениях водного обмена

В основе первичной диагностики заболеваний, вызывающих нарушения водного обмена, лежит тщательно собранная история развития патологического состояния. Врач проводит опрос пациента, в ходе которого уточняет возможные причины, сроки, течение заболевания, проводившееся лечение и т.д.

После клинического обследования различных органов и систем, как правило, требуется лабораторно-инструментальное подтверждение диагноза. Пациенту назначают исследование концентрации глюкозы в крови с целью исключения сахарного диабета.

6.1C: Метаболические пути — Biology LibreTexts

  1. Последнее обновление
  2. Сохранить как PDF
  1. Ключевые моменты
  2. Ключевые термины
  3. Метаболические пути
  4. Анаболические пути
  5. Катаболические пути
  6. Важность ферментов

Анаболический путь требует энергии и строит молекулы, в то время как катаболический путь производит энергию и расщепляет молекулы.

Цели обучения

  • Описать два основных типа метаболических путей

Ключевые моменты

  • Метаболический путь — это серия химических реакций в клетке, которые создают и разрушают молекулы для клеточных процессов.
  • Анаболические пути синтезируют молекулы и требуют энергии.
  • Катаболические пути расщепляют молекулы и производят энергию.
  • Поскольку почти все метаболические реакции происходят не спонтанно, белки, называемые ферментами, помогают облегчить эти химические реакции.

Ключевые термины

  • катаболизм : деструктивный метаболизм, обычно включающий выделение энергии и расщепление материалов
  • фермент : глобулярный белок, катализирующий биологическую химическую реакцию
  • анаболизм : конструктивный метаболизм тела в отличие от катаболизма

Метаболические пути

Процессы производства и расщепления углеводных молекул иллюстрируют два типа метаболических путей.Метаболический путь — это последовательный ряд взаимосвязанных биохимических реакций, которые преобразуют молекулу или молекулы субстрата через ряд промежуточных продуктов метаболизма, в конечном итоге приводя к конечному продукту или продуктам. Например, один путь метаболизма углеводов расщепляет большие молекулы на глюкозу. Другой метаболический путь может превращать глюкозу в большие молекулы углеводов для хранения. Первый из этих процессов требует энергии и называется анаболическим. Второй процесс производит энергию и называется катаболическим.Следовательно, метаболизм состоит из двух противоположных путей:

  1. Анаболизм (строительные молекулы)
  2. Катаболизм (разрушение молекул)
Рисунок \ (\ PageIndex {1} \): Анаболические и катаболические пути : Анаболические пути — это те пути, которые требуют энергии для синтеза более крупных молекул. Катаболические пути — это те пути, которые генерируют энергию, расщепляя более крупные молекулы. Оба типа путей необходимы для поддержания энергетического баланса клетки.

Анаболические пути

Анаболические пути требуют ввода энергии для синтеза сложных молекул из более простых. Одним из примеров анаболического пути является синтез сахара из CO 2 . Другие примеры включают синтез больших белков из строительных блоков аминокислот и синтез новых цепей ДНК из строительных блоков нуклеиновых кислот. Эти процессы имеют решающее значение для жизни клетки, происходят постоянно и требуют энергии, обеспечиваемой АТФ и другими высокоэнергетическими молекулами, такими как НАДН (никотинамидадениндинуклеотид) и НАДФН.

Катаболические пути

Катаболические пути включают разложение сложных молекул на более простые, высвобождая химическую энергию, хранящуюся в связях этих молекул. Некоторые катаболические пути могут захватывать эту энергию для производства АТФ, молекулы, используемой для питания всех клеточных процессов. Другие молекулы, запасающие энергию, такие как липиды, также расщепляются посредством аналогичных катаболических реакций, высвобождая энергию и производя АТФ.

Важность ферментов

Химические реакции в метаболических путях редко происходят спонтанно.Каждая стадия реакции ускоряется или катализируется белком, называемым ферментом. Ферменты важны для катализирования всех типов биологических реакций: тех, которые требуют энергии, а также тех, которые выделяют энергию.

Наследственные нарушения обмена веществ — симптомы и причины

Обзор

Унаследованные метаболические нарушения относятся к различным типам заболеваний, вызванных генетическими дефектами — чаще всего наследуемыми от обоих родителей — которые мешают обмену веществ в организме.Эти состояния также можно назвать врожденными нарушениями обмена веществ.

Метаболизм — это сложный набор химических реакций, которые ваше тело использует для поддержания жизни, включая производство энергии. Специальные ферменты расщепляют пищу или определенные химические вещества, поэтому ваше тело может сразу же использовать их в качестве топлива или хранить их. Кроме того, определенные химические процессы расщепляют вещества, которые больше не нужны вашему организму, или вырабатывают те, в которых ему не хватает.

Когда эти химические процессы не работают должным образом из-за дефицита гормонов или ферментов, возникает нарушение обмена веществ.Унаследованные метаболические нарушения делятся на разные категории, в зависимости от конкретного вещества и от того, накапливается ли оно в вредных количествах (потому что оно не может быть расщеплено), слишком мало или отсутствует.

Существуют сотни наследственных нарушений обмена веществ, вызванных различными генетическими дефектами. Примеры включают:

Некоторые нарушения обмена веществ можно диагностировать с помощью обычных скрининговых тестов, проводимых при рождении. Другие выявляются только после того, как у ребенка или взрослого проявляются симптомы заболевания.

Лечение наследственного метаболического нарушения зависит от типа и тяжести заболевания. Поскольку существует так много типов наследственных нарушений обмена веществ, рекомендации по лечению могут значительно различаться — от диетических ограничений до трансплантации печени.

Получайте самую свежую информацию о здоровье из клиники Мэйо на свой почтовый ящик.

Подпишитесь бесплатно и получите подробное руководство по здоровье пищеварительной системы, а также последние новости и новости о здоровье. Вы можете отказаться от подписки в любой время.

Подписывайся

Узнайте больше об использовании данных Mayo Clinic.

Чтобы предоставить вам наиболее актуальную и полезную информацию и понять, какие информация полезна, мы можем объединить вашу электронную почту и информацию об использовании веб-сайта с другая имеющаяся у нас информация о вас. Если вы пациент клиники Мэйо, это может включать защищенную медицинскую информацию. Если мы объединим эту информацию с вашими защищенными информация о здоровье, мы будем рассматривать всю эту информацию как защищенную информацию и будет использовать или раскрывать эту информацию только в соответствии с нашим уведомлением о политика конфиденциальности.Вы можете в любой момент отказаться от рассылки по электронной почте, нажав на ссылку для отказа от подписки в электронном письме.

Спасибо за подписку

Ваш подробный справочник по здоровью пищеварительной системы скоро будет в вашем почтовом ящике. Вы также получите электронные письма от Mayo Clinic о последних новостях в области здравоохранения, исследованиях и уходе.

Если вы не получите наше письмо в течение 5 минут, проверьте папку со спамом и свяжитесь с нами. на [email protected].

Извините, что-то пошло не так с вашей подпиской

Повторите попытку через пару минут

Повторить

Товары и услуги

Показать больше товаров от Mayo Clinic

Лечение наследственных нарушений обмена веществ в клинике Мэйо

12 июля 2017 г.

Показать ссылки
  1. Goldman L, et al., ред. Подход к врожденным ошибкам обмена веществ. В: Медицина Гольдмана-Сесила. 25-е ​​изд. Филадельфия, Пенсильвания: Сондерс Эльзевир; 2016 г. https://www.clinicalkey.com. По состоянию на 11 апреля 2017 г.
  2. Kliegman RM, et al. Подход к врожденным ошибкам обмена веществ. В: Учебник педиатрии Нельсона. 20-е изд. Филадельфия, Пенсильвания: Эльзевир; 2016 г. https://www.clinicalkey.com. По состоянию на 11 апреля 2017 г.
  3. Саттон VR. Врожденные нарушения обмена веществ: Классификация. https://www.uptodate.com/home. По состоянию на 11 апреля 2017 г.
  4. Саттон VR. Врожденные нарушения обмена веществ: определение конкретного заболевания. https://www.uptodate.com/home. По состоянию на 11 апреля 2017 г.
  5. Саттон VR. Врожденные нарушения обмена веществ: эпидемиология, патогенез и клинические особенности. https://www.uptodate.com/home. По состоянию на 11 апреля 2017 г.
  6. Коричневый AY. Allscripts EPSi. Клиника Мэйо, Рочестер, Миннесота, 11 апреля 2017 г.
  7. Lanpher BC (заключение эксперта). Клиника Мэйо, Рочестер, Миннесота, 16 мая 2017 г.

Связанные

Продукты и услуги

Показать больше продуктов и услуг Mayo Clinic

Наследственные нарушения обмена веществ

Типы, причины, симптомы и методы лечения

Унаследованные метаболические нарушения — это генетические состояния, которые приводят к нарушениям обмена веществ.У большинства людей с наследственными метаболическими нарушениями дефектный ген приводит к дефициту ферментов. Существуют сотни различных генетических нарушений обмена веществ, симптомы, методы лечения и прогнозы которых сильно различаются.

Что такое метаболизм?

Метаболизм — это все химические реакции, происходящие в организме для преобразования или использования энергии. Вот несколько основных примеров метаболизма:

  • Расщепление углеводов, белков и жиров в пище для высвобождения энергии.
  • Преобразование избыточного азота в продукты жизнедеятельности, выделяемые с мочой.
  • Разрушение или преобразование химических веществ в другие вещества и транспортировка их внутрь клеток.

Метаболизм — это организованная, но хаотическая линия сборки химических веществ. Сырье, полуфабрикаты и отходы постоянно используются, производятся, транспортируются и выбрасываются. «Рабочие» на конвейере — это ферменты и другие белки, которые вызывают химические реакции.

Причины наследственных нарушений обмена веществ

При большинстве наследственных нарушений обмена веществ один фермент либо вообще не вырабатывается организмом, либо вырабатывается в неработающей форме.Недостающий фермент подобен отсутствующему работнику на конвейере. В зависимости от функции этого фермента его отсутствие означает, что могут накапливаться токсичные химические вещества или может не производиться необходимый продукт.

Код или план производства фермента обычно содержится в паре генов. Большинство людей с наследственными нарушениями обмена веществ наследуют две дефектные копии гена — по одной от каждого родителя. Оба родителя являются «носителями» плохого гена, что означает, что они несут одну дефектную копию и одну нормальную копию.

У родителей нормальная копия гена компенсирует плохую копию. Уровень их ферментов обычно адекватен, поэтому у них может не быть симптомов генетического нарушения обмена веществ. Однако ребенок, унаследовавший две дефектные копии гена, не может производить достаточно эффективных ферментов, и у него развивается генетическое нарушение обмена веществ. Эта форма генетической передачи называется аутосомно-рецессивным наследованием.

Первопричиной большинства генетических нарушений обмена веществ является мутация гена, произошедшая много-много поколений назад.Мутация гена передается из поколения в поколение, обеспечивая ее сохранение.

Каждое наследственное нарушение обмена веществ довольно редко встречается в общей популяции. В совокупности наследственные метаболические нарушения могут поражать примерно 1 из 1000–2 500 новорожденных. У некоторых этнических групп населения, таких как евреи-ашкенази (евреи центрально-восточноевропейского происхождения), частота наследственных нарушений обмена веществ выше.

Типы наследственных нарушений обмена веществ

Выявлены сотни наследственных нарушений обмена веществ, и продолжают обнаруживаться новые.Некоторые из наиболее распространенных и важных генетических нарушений метаболизма включают:

Лизосомные нарушения накопления : Лизосомы — это пространства внутри клеток, которые расщепляют отходы метаболизма. Дефицит различных ферментов внутри лизосом может привести к накоплению токсичных веществ, вызывая нарушения обмена веществ, в том числе:

  • Синдром Гурлера (аномальная структура костей и задержка развития)
  • Болезнь Ниманна-Пика (у детей развивается увеличение печени, затруднения при кормлении и повреждение нервов)
  • Болезнь Тея-Сакса (прогрессирующая слабость у месячного ребенка, прогрессирующая до тяжелого повреждения нервов; ребенок обычно доживает до 4 или 5 лет)
  • Болезнь Гоше (боль в костях, увеличение печени и низкое количество тромбоцитов, часто легкая форма, у детей или взрослых)
  • Болезнь Фабри (боль в конечностях в детстве, при заболеваниях почек и сердца и инсультах во взрослом возрасте; поражаются только мужчины)
  • Болезнь Краббе (прогрессирующее поражение нервов, задержка развития у маленьких детей; иногда взрослые)

Галактоземия: Нарушение расщепления сахарной галактозы приводит к желтухе, рвоте и поражению печени увеличение новорожденного после грудного или искусственного вскармливания.

Болезнь мочи кленового сиропа: Дефицит фермента BCKD вызывает накопление аминокислот в организме. В результате повреждаются нервы, и моча пахнет сиропом.

Фенилкетонурия (PKU): Дефицит фермента PAH приводит к высокому уровню фенилаланина в крови. Если заболевание не распознается, наступает умственная отсталость.

Болезни накопления гликогена: Проблемы с накоплением сахара приводят к низкому уровню сахара в крови, болям в мышцах и слабости.

Митохондриальные нарушения: Проблемы внутри митохондрий, электростанции клеток, приводят к повреждению мышц.

Атаксия Фридрейха: Проблемы, связанные с белком под названием фратаксин, вызывают повреждение нервов и часто проблемы с сердцем. Неспособность ходить обычно наступает в молодом возрасте.

Пероксисомные расстройства: Подобно лизосомам, пероксисомы представляют собой крошечные пространства, заполненные ферментами внутри клеток. Плохая ферментативная функция пероксисом может привести к накоплению токсичных продуктов метаболизма.К пероксисомным расстройствам относятся:

  • Синдром Зеллвегера (аномальные черты лица, увеличенная печень и повреждение нервов у младенцев)
  • Адренолейкодистрофия (симптомы повреждения нервов могут развиться в детстве или в раннем взрослом возрасте в зависимости от формы.)

Метаболизм металлов нарушения: Уровни микроэлементов в крови контролируются специальными белками. Унаследованные метаболические нарушения могут привести к нарушению функции белков и токсическому накоплению металлов в организме:

Органические ацидемии: метилмалоновая ацидемия и пропионовая ацидемия.

Нарушения цикла мочевины: Дефицит орнитин-транскарбамилазы и цитруллинемия

Симптомы наследственных нарушений обмена веществ

Симптомы генетических нарушений обмена веществ широко варьируются в зависимости от имеющихся проблем метаболизма. Некоторые симптомы наследственных нарушений обмена веществ включают:

Симптомы могут возникать внезапно или медленно прогрессировать. Симптомы могут быть вызваны продуктами питания, лекарствами, обезвоживанием, незначительными заболеваниями или другими факторами. Симптомы появляются в течение нескольких недель после рождения при многих заболеваниях.Симптомы других наследственных метаболических нарушений могут проявиться через годы.

Диагностика наследственных нарушений обмена веществ

Наследственные нарушения обмена веществ присутствуют при рождении, а некоторые из них выявляются при плановом обследовании. Во всех 50 штатах проводится скрининг новорожденных на фенилкетонурию (ФКУ). Большинство штатов также проверяют новорожденных на галактоземию. Однако никаких государственных тестов на выявление всех известных наследственных нарушений обмена веществ у младенцев не проводилось.

Усовершенствованная технология тестирования побуждает многие штаты расширять скрининг новорожденных на генетические нарушения обмена веществ.Национальный центр скрининга новорожденных и генетических ресурсов предоставляет информацию о методах скрининга в каждом штате.

Если наследственное нарушение обмена веществ не обнаруживается при рождении, его часто не диагностируют, пока не появятся симптомы. При появлении симптомов доступны специальные анализы крови или ДНК для диагностики большинства генетических нарушений обмена веществ. Направление в специализированный центр (обычно при университете) увеличивает шансы на постановку правильного диагноза.

Лечение наследственных нарушений обмена веществ

Доступны ограниченные методы лечения наследственных нарушений обмена веществ.Существенный генетический дефект, вызывающий это состояние, не может быть исправлен с помощью современных технологий. Вместо этого лечение пытается обойти проблему с метаболизмом.

Лечение генетических нарушений метаболизма основывается на нескольких общих принципах:

  • Уменьшите или исключите потребление любых продуктов питания или лекарств, которые не могут метаболизироваться должным образом.
  • Замените фермент или другое химическое вещество, которое отсутствует или неактивно, чтобы восстановить метаболизм до максимально близкого к нормальному.
  • Удаляет токсичные продукты метаболизма, которые накапливаются из-за нарушения обмена веществ.

Лечение может включать такие меры, как:

  • Специальные диеты, исключающие определенные питательные вещества
  • Прием заменителей ферментов или других добавок, поддерживающих метаболизм
  • Обработка крови химическими веществами для детоксикации опасных побочных продуктов метаболизма

По возможности , человек с наследственным нарушением обмена веществ должен получить помощь в медицинском центре, имеющем опыт лечения этих редких состояний.

Дети и взрослые с наследственными нарушениями обмена веществ могут серьезно заболеть, требуя госпитализации, а иногда и жизнеобеспечения.Лечение во время этих эпизодов направлено на оказание неотложной помощи и улучшение функции органов.

Влияние метаболизма цитохрома P450 на лекарственный ответ, взаимодействия и побочные эффекты

1. Wilkinson GR. Метаболизм лекарств и вариабельность реакции на лекарства среди пациентов. Н Engl J Med . 2005; 352: 2211–21 ….

2. Бойня Р.Л., Эдвардс DJ. Последние достижения: ферменты цитохрома P450. Энн Фармакотер . 1995; 29: 619–24.

3. Weinshilboum R. Наследование и лекарственная реакция. Н Engl J Med . 2003; 348: 529–37.

4. Филипс К.А., Veenstra DL, Орен Э, Ли Дж. К., Сади В. Потенциальная роль фармакогеномики в снижении побочных реакций на лекарства: систематический обзор. ЯМА . 2001; 286: 2270–9.

5. Брэдфорд ЛД. Частота аллеля CYP2D6 у европеоидов, азиатов, африканцев и их потомков. Фармакогеномика .2002; 3: 229–43.

6. Специальный отчет: генотипирование полиморфизмов цитохрома Р450 для определения статуса метаболизатора лекарственного средства. Программа Technol Eval Cent Asses Exec Summ . 2004; 19: 1-2.

7. Авраам Б.К., Адитан С. Генетический полиморфизм CYP2D6. Индийский J Pharmacol . 2001; 33: 147–69.

8. Бернар С., Невилл К.А., Нгуен А.Т., Flockhart DA. Межэтнические различия в генетических полиморфизмах CYP2D6 в U.Популяция С.: клиническое значение. Онколог . 2006; 11: 126–35.

9. Чонг Э, Ensom MH. Фармакогенетика ингибиторов протонной помпы: систематический обзор. Фармакотерапия . 2003. 23: 460–71.

10. Михалец Э.Л. Обновление: клинически значимые лекарственные взаимодействия цитохрома P-450. Фармакотерапия . 1998. 18: 84–112.

11. Комод ГК, Спенс Дж. Д., Бейли Д.Г. Фармакокинетико-фармакодинамические последствия и клиническое значение ингибирования цитохрома P450 3A4. Клин Фармакокинет . 2000; 38: 41–57.

12. Маллинз М.Э., Горовиц Б.З., Linden DH, Смит GW, Norton RL, Пень Дж. Опасное для жизни взаимодействие мибэ-фрадила и бета-адреноблокаторов с дигидропиридиновыми блокаторами кальциевых каналов. ЯМА . 1998. 280: 157–158.

13. Дейли А.К., Король Б.П. Фармакогенетика пероральных антикоагулянтов. Фармакогенетика . 2003; 13: 247–52.

14.Cozza KL, Armstrong SC, Oesterheld JR. Лекарственные взаимодействия по специальностям. В: Краткое руководство по принципам лекарственного взаимодействия для медицинской практики: цитохром P450s, UGTs, P-гликопротеины. 2-е изд. Вашингтон, округ Колумбия: American Psychiatric Pub., 2003: 167–396.

15. Lexi-Comp [справочная онлайн-библиотека]. Хадсон, Огайо: Американская фармацевтическая ассоциация; 1978. Обновляется ежедневно. По состоянию на 21 февраля 2007 г., по адресу: http://www.crlonline.com/crlsql (требуется подписка).

16. Школа медицины Университета Индианы.Таблица лекарственных взаимодействий P450. По состоянию на 21 февраля 2007 г., по адресу: http://medicine.iupui.edu/flockhart/table.htm.

17. Спроул Б.А., Оттон С.В., Cheung SW, Чжун XH, Ромач МК, Продавцы EM. Ингибирование CYP2D6 у пациентов, получавших сертралин. Дж. Клин Психофармакол . 1997. 17: 102–6.

18. Рэй В, Мюррей К.Т., Мередит С, Нарасимхулу СС, Зал К, Штейн СМ. Пероральный эритромицин и риск внезапной смерти от сердечных причин. Н Engl J Med . 2004; 351: 1089–96.

19. Heimark LD, Винкерс Л, Кунце К, Гибальди М, Эдди AC, Трагер WF, и другие. Механизм взаимодействия амиодарона и варфарина у человека. Clin Pharmacol Ther . 1992; 51: 398–407.

20. Кроуфорд П., Чедвик DJ, Мартин С, Тиа Дж, Back DJ, Орм М. Взаимодействие фенитоина и карбамазепина с комбинированными пероральными контрацептивными стероидами. Br J Clin Pharmacol . 1990; 30: 892–6.

21. Molden E, Андерссон К.С. Симвастатин-ассоциированный рабдомиолиз после одновременного применения макролидных антибиотиков у двух пациентов. Фармакотерапия . 2007. 27: 603–7.

22. Goldschmidt N, Азаз-Лившиц Т, Гоцман, Нир-Пас Р, Бен-Иегуда А, Мушкат М. Комбинированная сердечная токсичность перорального эритромицина и верапамила. Энн Фармакотер .2001; 35: 1396–9.

23. Имани С., Юско WJ, Штайнер Р. Дилтиазем замедляет метаболизм перорального преднизона, влияя на маркеры Т-клеток. Педиатр-трансплант . 1999; 3: 126–30.

24. Spina E, Авеносо А, Скордо MG, Ancione M, Мадиа А, Гатти Дж., и другие. Ингибирование метаболизма рисперидона флуоксетином у пациентов с шизофренией: клинически значимое фармакокинетическое лекарственное взаимодействие. Дж. Клин Психофармакол . 2002; 22: 419–23.

25. Лаугесен С., Энггаард Т.П., Педерсен Р.С., Синдруп Ш, Брозен К. Пароксетин, ингибитор цитохрома P450 2D6, снижает стереоселективное O-деметилирование и снижает гипоалгезический эффект трамадола. Clin Pharmacol Ther . 2005; 77: 312–23.

26. Лиля Дж.Дж., Кивисто КТ, Бакман Дж. Т., Ламберг Т.С., Neuvonen PJ. Грейпфрутовый сок значительно увеличивает концентрацию буспирона в плазме. Clin Pharmacol Ther . 1998. 64: 655–60.

27. Kazmier FJ. Значительное взаимодействие между метронидазолом и варфарином. Mayo Clin Proc . 1976; 51: 782–4.

28. Кастберг I, Хелле Дж, Aamo TO. Длительное фармакокинетическое лекарственное взаимодействие тербинафина и амитриптилина. Ther Drug Monitor . 2005; 27: 680–2.

29. Meyer UA. Фармакогенетика и побочные реакции на лекарства. Ланцет .2000; 356: 1667–71.

30. Баллантайн CM, Корсини А, Дэвидсон MH, Холдаас H, Якобсон Т.А., Leitersdorf E, и другие. Риск миопатии при терапии статинами у пациентов из группы высокого риска. Arch Intern Med . 2003. 163: 553–64.

31. Поульсен Л., Арендт-Нильсен Л, Бросен К, Синдруп Ш. Гипоальгетический эффект трамадола по отношению к CYP2D6. Clin Pharmacol Ther .1996. 60: 636–44.

32. Ясар У, Форслунд-Бергенгрен C, Тайбринг G, Дорадо П, Ллерена А, Sjoqvist F, и другие. Фармакокинетика лозартана и его метаболита E-3174 в зависимости от генотипа CYP2C9. Clin Pharmacol Ther . 2002; 71: 89–98.

33. Управление по санитарному надзору за качеством пищевых продуктов и медикаментов США. Центр информации для потребителей по устройствам и радиологическому здоровью. Оформление нового устройства. Тест Roche AmpliChip для генотипирования цитохрома P450 и инструментальная система Affymetrix GeneChip Microarray — K042259.По состоянию на 21 февраля 2007 г., по адресу: http://www.fda.gov/cdrh/mda/docs/k042259.html.

34. Thompson CA. Системы генотипирования ферментов, метаболизирующих лекарственные препараты, переходят в клиническую практику. Am J Health Syst Pharm . 2006; 63: 121416.

35. Chou WH, Ян FX, де Леон Дж, Барнхилл Дж., Роджерс Т, Кронин М, и другие. Расширение пилотного исследования: влияние полиморфизма цитохрома P450 2D6 на исход и затраты, связанные с тяжелым психическим заболеванием. Дж. Клин Психофармакол . 2000; 20: 246–51.

36. Рау Т, Wohlleben G, Wuttke H, Thuerauf N, Lunkenheimer J, Ланчик М, и другие. Генотип CYP2D6: влияние на побочные эффекты и отсутствие ответа во время лечения антидепрессантами — пилотное исследование. Clin Pharmacol Ther . 2004; 75: 386–93.

Регуляция метаболизма — обзор

Регуляция адаптации

Регуляция метаболизма при голодании сложна и направлена ​​на преобразование общей метаболической среды организма в адаптивные реакции на тканевом и клеточном уровне, ведущие к структурным, биохимическим и функциональным изменениям.Существует обширное взаимодействие механизмов восприятия питательных веществ и нервной и эндокринной афферентной и эфферентной передачи сигналов.

Гипоталамус, в частности дугообразное ядро ​​(ARC), был признан основным центром для интеграции важной информации о питании от периферических органов в энергетический код, устанавливающий уровень расхода энергии всего тела. Снижение расхода энергии в состоянии покоя во время голодания нельзя объяснить только уменьшением безжировой массы тела, и координация гормональных изменений на гипоталамическом уровне играет дополнительную важную роль.Секреция и обмен катехоламинов уменьшаются при неосложненном голодании. Клинически это определяется как снижение внутренней температуры, частоты сердечных сокращений и артериального давления у пациентов во время голодания. Гормоны щитовидной железы известны как мощные гипоталамические регуляторы энергетического гомеостаза всего тела. Голодание приводит к заметному подавлению диэнцефальной секреции ТТГ в результате снижения уровня лептина. Лептин — это гормон, полученный из адипоцитов, который индуцирует биосинтез и высвобождение гипоталамического TRH в условиях отсутствия голодания за счет увеличения гипоталамического типа 2, зависимого от дейодиназы T 3 .Снижение активности 5′-монодейодиназы в печени и периферических тканях, приводящее к снижению превращения тироксина (T 4 ) в метаболически активную форму, трийодтиронин (T 3 ), наблюдалось в течение нескольких часов или дней у пациентов. пациенты на голодной диете. Однако механизм, связывающий уровни T 3 с низкой циркуляцией крови с уменьшением расхода энергии в состоянии покоя при голодании, еще недостаточно изучен.

Глюкагон, пептид из 29 аминокислот, высвобождаемый из α -клеток поджелудочной железы, является важным регулятором гомеостаза глюкозы, противодействующим инсулину, и высвобождается в условиях низкого уровня глюкозы в плазме.Он стимулирует выработку глюкозы в печени за счет увеличения гликогенолиза и глюконеогенеза в печени через свой канонический путь цАМФ / ПКА, облегчая фосфорилирование и аллостерическое изменение ключевых метаболических ферментов и ядерных факторов (например, CREB, белок, связывающий элемент ответа цАМФ). Таким образом, он играет решающую роль на ранней стадии адаптации к голоданию (Таблица 1).

Связь метаболической среды организма с энергетическим статусом клетки имеет решающее значение для ее адаптивного ответа на голодание.Клетки имеют энергетические сенсоры, обнаруживающие ограничение доступности питательных веществ во время голодания и запускающие гомеостатические механизмы, чтобы адаптировать свои метаболические потребности к колебаниям питательных веществ. Гетеротримерная AMP-активированная протеинкиназа (AMPK) и эволюционно-консервативная NAD + -зависимая гистондеацетилаза SIRT1 недавно были идентифицированы как важная сигнальная основа в энергетическом гомеостазе клеток и всего тела во время голодания (Рисунок 6). . AMPK активируется в условиях низкоэнергетического восприятия заряда внутрицитоплазматических изменений в соотношении AMP / ATP конкурентным образом.SIRT1 индуцируется и активируется низкими внутриклеточными уровнями NAD + (никотинамидадениндинуклеотид), которые повышаются аналогично AMP при голодании и ограничении питательных веществ. Активация каждого ферментативного пути приводит к сходному фенотипическому результату с восстановлением внутриклеточного энергетического баланса за счет отключения энергоемких биосинтетических путей (таких как синтез белка, синтеза гликогена, жирных кислот и синтеза стеролов) и благоприятствования продукции АТФ (например, посредством липолиз, окисление жирных кислот и митохондриальный биогенез).На структурном уровне это выражается в наблюдаемой мышечной пластичности во время голодания с переключением с быстро сокращающихся гликолитических волокон типа II на медленно сокращающиеся окислительные волокна типа I.

Ось AMPK-SIRT1 объединяет несколько гормональных и пищевых сигналов (например, глюкагон, лептин, адипонектин, гликоген и свободные жирные кислоты) и встроена в сложную саморегулирующуюся сеть, направленную на ограничение общих затрат энергии во время голодания ( Рисунок 6). Он обладает плейотропными внутриклеточными эффектами, что приводит к быстрым изменениям за счет фосфорилирования AMP-киназы и аллостерических изменений основных метаболических ферментов, таких как ацетил-КоА-карбоксилаза (синтез жирных кислот), гормоночувствительная липаза (гидролиз триглицеридов) и комплекс пируватдегидрогеназы (окисление пируват в цикле Кребса).Средне- и долгосрочные адаптивные механизмы действуют как следствие транскрипционных модификаций метаболических ферментов посредством фосфорилирования и деацетилирования нижестоящих ядерных рецепторов (например, FOXO, PPAR) и корегуляторов транскрипции (PCG-1 α ). Кроме того, деацетилирование остатков лизина помогает SIRT1 увеличивать степень уплотнения хроматина, что приводит к прямому подавлению транскрипционной активности.

Семейство факторов транскрипции Forkhead box O (FOXO) привлекло значительное внимание как элементарные регуляторы метаболизма.FOXO играют решающую роль в усилении транскрипции ключевых ферментов печеночного глюконеогенеза при раннем голодании (G6Pase, PEPCK), блокировании дифференцировки адипоцитов, снижении синтеза белка и увеличении деградации белка (через UPS и аутофагию; см. Выше). Его активность и клеточная локализация контролируются и увеличиваются за счет его состояний ацетилирования (через SIRT1) и фосфорилирования (через AMPK). Рецепторы, активируемые пероксисомальным пролифератором (PPAR), представляют собой еще одно семейство важных факторов транскрипции, активируемых лигандами.PPAR α , например, является одним из главных регуляторов способности клетки сжигать жирные кислоты и действует как внутриклеточный сенсор жирных кислот. Семейство рецепторов эстрогеновых рецепторов (ERR) ( α , β , γ ) представляет собой еще одну важную нижестоящую мишень AMPK. Активация связана с повышенной экспрессией генов окисления жирных кислот и ферментов каскада окислительного фосфорилирования (OXPHOS). Он также усиливает пируватдегидрогеназу киназу 4 (PDK4), ключевой фермент, участвующий в вызванном голоданием отключении пируватдегидрогеназного комплекса.Хотя эти факторы ядерной транскрипции придают первый уровень специфичности транскрипционным адаптивным процессам во время дефицита энергии, корегуляторы необходимы для полной активации транскрипционного аппарата, что значительно увеличивает разнообразие взаимодействующих партнеров и, следовательно, сложность этого регуляторного процесса. Коактиватор-1альфа PPAR γ (PGC-1 α ) обычно считается центральным узлом индуцированной голоданием транскрипционной коактивации и участвует в регуляции больших кластеров генов, контролирующих окислительное фосфорилирование и метаболизм жирных кислот.Это приводит, например, к переключению с гликолитических мышечных волокон на окислительные. Он проявляет свое действие в сочетании с факторами транскрипции FOXO, PPAR и ERR. PGC-1 α контролируется осью AMPK-SIRT1 и активируется — подобно FOXO — деацетилированием и фосфорилированием (рис. 6).

Метаболические функции печени

Метаболические функции печени

Гепатоциты — это метаболические сверхспособности в организме. Они играют решающую роль в синтезе молекул, которые используются где-то еще для поддержания гомеостаза, в преобразовании молекул одного типа в другой и в регулировании энергетического баланса. Если вы прослушали курс биохимии, вы, вероятно, потратили большую часть этого курса на изучение метаболических путей в печени. Рискуя быть осужденным слабой похвалой, основные метаболические функции печени можно разделить на несколько основных категорий:

Углеводный метаболизм

Для всех животных критически важно поддерживать концентрацию глюкозы в крови в узком нормальном диапазоне. Поддержание нормального уровня глюкозы в крови как в течение короткого (часы), так и длительного (от дней до недель) периодов времени — одна из особенно важных функций печени.

Гепатоциты содержат множество различных метаболических путей и используют десятки ферментов, которые поочередно включаются или выключаются в зависимости от того, повышается ли уровень глюкозы в крови или выходит за пределы нормального диапазона. Два важных примера этих способностей:

  • Избыточная глюкоза, попадающая в кровь после еды, быстро поглощается печенью и секвестрируется в виде большого полимера, гликогена (процесс, называемый гликогенезом ). Позже, когда концентрация глюкозы в крови начинает снижаться, печень активирует другие пути, которые приводят к деполимеризации гликогена (гликогенолиз , ) и экспорту глюкозы обратно в кровь для транспортировки во все другие ткани.
  • Когда запасы гликогена в печени истощаются, как это происходит, когда животное не ест в течение нескольких часов, сдаются ли гепатоциты? Нет! Они распознают проблему и активируют дополнительные группы ферментов, которые начинают синтезировать глюкозу из таких веществ, как аминокислоты и негексозные углеводы ( глюконеогенез ). Способность печени синтезировать эту «новую» глюкозу имеет огромное значение для плотоядных животных, у которых, по крайней мере в дикой природе, диета практически не содержит крахмала.
Жировой обмен

Некоторые аспекты липидного обмена уникальны для печени, но многие из них выполняются преимущественно печенью. Основные примеры роли печени в метаболизме жиров включают:

  • Печень чрезвычайно активна в окислении триглицеридов для выработки энергии. Печень расщепляет намного больше жирных кислот, в которых нуждаются гепатоциты, и экспортирует большие количества ацетоацетата в кровь, где он может быть захвачен и легко метаболизирован другими тканями.
  • Большая часть липопротеинов синтезируется в печени.
  • Печень является основным местом преобразования избыточных углеводов и белков в жирные кислоты и триглицериды, которые затем экспортируются и хранятся в жировой ткани.
  • Печень синтезирует большое количество холестерина и фосфолипидов. Некоторые из них содержат липопротеины и становятся доступными для остального тела. Остальная часть выводится с желчью в виде холестерина или после преобразования в желчные кислоты.
Белковый метаболизм

Наиболее важные аспекты метаболизма белков, происходящие в печени:

  • Дезаминирование и трансаминирование аминокислот с последующим превращением неазотистой части этих молекул в глюкозу или липиды. Некоторые из ферментов, используемых в этих путях (например, аланин и аспартатаминотрансферазы), обычно анализируются в сыворотке для оценки повреждения печени.
  • Удаление аммиака из организма путем синтеза мочевины.Аммиак очень токсичен, и, если его быстро и эффективно не удалить из кровотока, он приведет к заболеванию центральной нервной системы. Частой причиной такой печеночной энцефалопатии у собак и кошек являются пороки кровоснабжения печени, называемые портосистемными шунтами.
  • Синтез заменимых аминокислот.
  • Гепатоциты отвечают за синтез большинства белков плазмы. Альбумин, основной белок плазмы, синтезируется почти исключительно в печени.Также печень синтезирует многие факторы свертывания, необходимые для свертывания крови.

Отправляйте комментарии [email protected]

Нарушения обмена веществ — симптомы, причины, лечение

Метаболизм — это расщепление пищи на более простые компоненты: белки, углеводы (или сахара) и жиры. Нарушения обмена веществ возникают, когда эти нормальные процессы нарушаются. Нарушения обмена веществ могут передаваться по наследству, и в этом случае они также известны как врожденные нарушения обмена веществ, или они могут быть приобретены в течение вашей жизни.Существует множество нарушений обмена веществ, и они распространены в Соединенных Штатах. Например, диабет — это нарушение обмена веществ, которым страдают примерно 26 миллионов американцев (Источник: CDC).

Фенилкетонурия является примером наследственного метаболического нарушения, характеризующегося неспособностью расщеплять один из строительных блоков белка, аминокислоту фенилаланин. Диабет I типа, заболевание, при котором поджелудочная железа не вырабатывает достаточно инсулина для поддержания сбалансированного уровня сахара в крови, представляет собой нарушение метаболизма сахара.Примером нарушения обмена веществ, влияющего на метаболизм жиров, является болезнь Гоше, которая характеризуется недостатком фермента глюкоцереброзидазы. Нарушения обмена веществ также могут быть осложнениями тяжелых заболеваний или состояний, включая печеночную или дыхательную недостаточность, рак, хроническое обструктивное заболевание легких (ХОБЛ, включая эмфизему и хронический бронхит) и ВИЧ / СПИД.

Огромные успехи были достигнуты в распознавании и лечении нарушений обмена веществ. Иногда возникают очень сложные пути, которые приводят к нарушению обмена веществ.В других случаях ответственность лежит исключительно на одной крохотной ошибке в ДНК человека. Эти открытия позволили ученым разработать необычные методы лечения больных, и темпы открытий продолжают ускоряться.

Симптомы метаболических нарушений различаются у разных людей и в зависимости от типа заболевания. Некоторые нарушения обмена веществ приводят к легким симптомам, которые можно контролировать с помощью лекарств и изменения образа жизни, в то время как другие могут вызывать серьезные и опасные для жизни симптомы, такие как проблемы с дыханием, судороги и органная недостаточность.Некоторые наследственные метаболические нарушения могут потребовать длительного приема пищевых добавок и лечения, в то время как метаболические нарушения, возникающие в результате другого заболевания или состояния, часто проходят после лечения основного состояния.

Немедленно обратитесь за медицинской помощью (позвоните 911) в случае серьезных симптомов, таких как сильное затрудненное дыхание; синеватый оттенок губ или ногтей; захват; и изменение уровня сознания или бдительности, например, потеря сознания или отсутствие реакции.

Немедленно обратитесь за медицинской помощью. , если вы лечитесь от нарушения обмена веществ, но легкие симптомы повторяются или сохраняются.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *