Все о физических свойствах воды: Страница не найдена — ORDVOR.COM

Содержание

Физические свойства воды

Физические свойства воды

(по И. В. Петрянову)

Почему вода — вода?

Среди необозримого множества веществ вода с ее физико-химическими свойствами занимает совершенно особое, исключительное место. И это надо понимать буквально.

Почти все физико-химические свойства воды — исключение в природе. Она действительно самое удивительное вещество на свете. Вода удивительна не только многообразием изотопных форм молекулы и не только надеждами, которые связаны с ней как с неиссякаемым источником энергии будущего. Кроме того, она удивительна и своими — самыми обычными свойствами.

Как построена молекула воды?

Как построена одна молекула воды, теперь известно очень точно. Она построена вот так.


Хорошо изучено и измерено взаимное расположение ядер атомов водорода и кислорода и расстояние между ними. Оказалось, что молекула воды нелинейна. Вместе с электронными оболочками атомов молекулу воды, если на нее взглянуть «сбоку», можно было бы изобразить вот так: т.

е. геометрически взаимное расположение зарядов в молекуле можно изобразить как простой тетраэдр. Все молекулы воды с любым изотопным составом построены совершенно одинаково.

Сколько молекул воды в океане?

Одна. И этот ответ не совсем шутка. Конечно, каждый может, посмотрев в справочник и узнав, сколько в Мировом океане воды, легко сосчитать, сколько всего в нем содержится молекул Н2О. Но такой ответ будет не вполне верен. Вода — вещество особенное. Благодаря своеобразному строению отдельные молекулы взаимодействуют между собой. Возникает особая химическая связь вследствие того, что каждый из атомов водорода одной молекулы оттягивает к себе электроны атомов кислорода в соседних молекулах. За счет такой водородной связи каждая молекула воды оказывается довольно прочно связанной с четырьмя другими соседними молекулами, подобно тому как это изображено на схеме. Правда, эта схема чересчур упрощена — она плоская, иначе не изобразишь на рисунке. Представим себе несколько более верную картину.

Для этого нужно учесть, что плоскость, в которой расположены водородные связи (они обозначены пунктиром), в молекуле воды направлена перпендикулярно к плоскости расположения водородных атомов.

Все отдельные молекулы Н2О в воде оказываются связанными в единую сплошную пространственную сетку — в одну гигантскую молекулу. Поэтому вполне оправдано утверждение некоторых ученых физико-химиков, что весь океан — это одна молекула. Но не следует понимать это утверждение слишком буквально. Хотя все молекулы воды в воде и связываются между собой водородными связями, они в то же бремя находятся в очень сложном подвижном равновесии, сохраняя индивидуальные свойства и единичных молекул и образуя сложные агрегаты. Подобное представление приложимо не только к воде: кусок алмаза тоже одна молекула.

Как построена молекула льда?

Никаких особых молекул льда нет. Молекулы воды благодаря своему замечательному строению соединены в куске льда друг с другом так, что каждая из них связана и окружена четырьмя другими молекулами. Это приводит к возникновению очень рыхлой структуры льда, в которой остается очень много свободного объема. Правильное кристаллическое строение льда выражается в изумительном изяществе снежинок и в красоте морозных узоров на замерзших оконных стеклах.

Как же все-таки построены молекулы воды в воде?

К сожалению, этот очень важный вопрос изучен еще недостаточно. Строение молекул в жидкой воде очень сложно. Когда лед плавится, его сетчатая структура частично сохраняется в образующейся воде. Молекулы в талой воде состоят из многих простых молекул — из агрегатов, сохраняющих свойства льда. При повышении температуры часть их распадается, их размеры становятся меньше.

Взаимное притяжение ведет к тому, что средний размер сложной молекулы воды в жидкой воде значительно превышает размеры одной молекулы воды. Такое необычайное молекулярное строение воды обусловливает ее необычайные физико-химические свойства.

Какова должна быть плотность воды?

Правда, очень странный вопрос? Вспомните, как была установлена единица массы — один грамм. Это масса одного кубического сантиметра воды. Значит, не может быть никакого сомнения в том, что плотность воды должна быть только такой, какая она есть. Можно ли в этом сомневаться? Можно. Теоретики подсчитали, что если бы вода не сохраняла рыхлую, льдоподобную структуру в жидком состоянии и ее молекулы были бы упакованы плотно, то и плотность воды была бы гораздо выше. При 25°С она была бы равна не 1,0, а 1,8 г/см3.

При какой температуре вода должна кипеть?

Этот вопрос тоже, конечно, странен. Ведь вода кипит при ста градусах. Это знает каждый. Больше того, всем известно, что именно температура кипения воды при нормальном атмосферном давлении и выбрана в качестве одной из опорных точек температурной шкалы, условно обозначенной 100°С.

Однако вопрос поставлен иначе: при какой температуре вода должна кипеть? Ведь температуры кипения различных веществ не случайны. Они зависят от положения элементов, входящих в состав их молекул, в периодической системе Менделеева.

Если сравнивать между собой одинаковые по составу химические соединения различных элементов, принадлежащих к одной и той же группе таблицы Менделеева, то легко заметить, что чем меньше атомный номер элемента, чем меньше его атомный вес, тем ниже температура кипения его соединений. Вода по химическому составу может быть названа гидридом кислорода. Н2Те, H2Se и H2S — химические аналоги воды. Если проследить за температурами их кипения и сопоставить, как изменяются температуры кипения гидридов в других группах периодической системы, то можно довольно точно определить температуру кипения любого гидрида, так нее как и любого другого соединения. Сам Менделеев таким способом смог предсказать свойства химических соединений еще не открытых элементов.

Если же определить температуру кипения гидрида кислорода по положению его в периодической таблице, то окажется, что вода должна кипеть при -80° С. Следовательно, вода кипит приблизительно на сто восемьдесят градусов выше, чем должна кипеть. Температура кипения воды — это наиболее обычное ее свойство — оказывается необычайным и удивительным.

Свойства любого химического соединения зависят от природы образующих его элементов и, следовательно, от их положения в периодической системе химических элементов Менделеева. На этих графиках приведены зависимости температур кипения и плавления водородных соединений IV и VI группы периодической системы. Вода является поразительным исключением. Благодаря очень малому радиусу протона силы взаимодействия между ее молекулами столь велики, что разделить их очень трудно, поэтому вода кипит и плавится при аномально высоких температурах.

График А. Нормальная зависимость температуры кипения гидридов элементов IV группы от их положения в таблице Менделеева. График Б. Среди гидридов элементов VI группы вода обладает аномальными свойствами: вода должна была бы кипеть при минус 80 — минус 90° С, а кипит при плюс 100° С.

График В. Нормальная зависимость температуры плавления гидридов элементов IV группы от их положения в таблице Менделеева. График Г. Среди гидридов элементов VI группы вода нарушает порядок: должна была бы плавиться при минус 100 °С, а ледяные сосульки тают при 0°С.

При какой температуре вода замерзает?

Не правда ли, вопрос не менее странен, чем предыдущие? Ну кто же не знает, что вода замерзает при нуле градусов? Это вторая опорная точка термометра. Это самое обычное свойство воды. Но ведь и в этом случае можно спросить: при какой температуре вода должна замерзать в соответствии со своей химической природой? Оказывается, гидрид кислорода на основании егс положения в таблице Менделеева должен был бы затвердевать при ста градусах ниже нуля.

Сколько существует жидких состояний воды?

На такой вопрос не так просто ответить. Конечно, тоже одно — привычная нам всем жидкая вода. Но вода в жидком состоянии обладает такими необыкновенными свойствами, что приходится задуматься: правилен ли такой простой, казалось бы, не вызывающий никаких сомнений ответ? Вода — единственное в мире вещество, которое после плавления сначала сжимается, а затем по мере повышения температуры начинает расширяться.

Примерно при 4°С у воды наибольшая плотность. Эту редкостную аномалию в свойствах воды объясняют тем, что в действительности жидкая вода представляет собой сложный раствор совершенно необычайного состава: это раствор воды в воде.

При плавлении льда сначала образуются крупные сложные молекулы воды. Они сохраняют остатки рыхлой кристаллической структуры льда и растворены в обычной низкомолекулярной воде. Поэтому сначала плотность воды низкая, но с повышением температуры эти большие молекулы разрушаются, и поэтому плотность воды растет, пока не начнет преобладать обычное тепловое расширение, при котором плотность воды снова падает. Если это верно, то возможны несколько состояний воды, только их никто не умеет разделить. И пока неизвестно, удастся ли когда-нибудь это сделать. Такое необычайное свойство воды имеет огромное значение для жизни. В водоемах перед наступлением зимы постепенно охлаждающаяся вода опускается вниз, пока температура всего водоема не достигнет 4°С. При дальнейшем охлаждении более холодная вода остается сверху и всякое перемешивание прекращается.

В результате создается необычайное положение: тонкий слой холодной воды становится как бы «теплым одеялом» для всех обитателей подводного мира. При 4°С они чувствуют себя явно неплохо.

Что должно быть легче — вода или лед?

Кто же этого не знает… Ведь лед плавает на воде. В океане плавают гигантские айсберги. Озера зимой покрыты плавающим сплошным слоем льда. Конечно, лед легче воды.

Но почему «конечно»? Разве это так ясно? Наоборот, объем всех твердых тел при плавлении увеличивается, и они тонут в своем собственном расплаве. А вот лед плавает в воде. Это свойство воды — аномалия в природе, исключение, и притом совершенно замечательное исключение.

Положительные заряды в молекуле воды связаны с атомами водорода. Отрицательные заряды — это валентные электроны кислорода. Их взаимное расположение в молекуле воды можно изобразить в виде простого тетраэдра.

Попробуем вообразить, как выглядел бы мир, если бы вода обладала нормальными свойствами и лед был бы, как и полагается любому нормальному веществу, плотнее жидкой воды. Зимой намерзающий сверху более плотный лед тонул бы в воде, непрерывно опускаясь на дно водоема. Летом лед, защищенный толщей холодной воды, не мог бы растаять. Постепенно все озера, пруды, реки, ручьи промерзли бы нацело, превратившись в гигантские ледяные глыбы. Наконец, промерзли бы моря, а за ними и океаны. Наш прекрасный цветущий зеленый мир стал бы сплошной ледяной пустыней, кое-где покрытой тонким слоем талой воды.

Сколько существует льдов?

В природе на нашей Земле — один: обычный лед. Лед — горная порода с необычайными свойствами. Он твердый, но течет, как жидкость, и существуют огромные ледяные реки, медленно стекающие с высоких гор. Лед изменчив — он непрерывно исчезает и образуется вновь. Лед необычайно прочен и долговечен — десятки тысячелетий хранит он в себе без изменений тела мамонтов, случайно погибших в ледниковых трещинах. В своих лабораториях человек сумел открыть еще, по крайней мере, шесть различных, не менее удивительных льдов. В природе их найти нельзя. Они могут существовать только при очень высоких давлениях. Обычный лед сохраняется до давления 208 МПа (мегапаскалей), но при этом давлении он плавится при — 22 °С. Если давление выше, чем 208 МПа, возникает плотный лед — лед-Ш. Он тяжелее воды и тонет в ней. При более низкой температуре и большем давлении — до 300 МПа — образуется еще более плотный лед-П. Давление сверх 500 МПа превращает лед в лед-V. Этот лед можно нагреть почти до 0 ° С, и он не растает, хотя и находится под огромным давлением. При давлении около 2ГПа (гигапаскалей) возникает лед-VI. Это буквально горячий лед — он выдерживает, не плавясь, температуру 80° С. Лед-VII, найденный при давлении ЗГПа, пожалуй, можно назвать раскаленным льдом. Это самый плотный и тугоплавкий из известных льдов. Он плавится только при 190° выше нуля.

Лед-VII обладает необыкновенно высокой твердостью. Этот лед может стать даже причиной внезапных катастроф. В подшипниках, в которых вращаются валы мощных турбин электростанций, развивается огромное давление. Если в смазку попадет хотя бы немного воды, она замерзнет, несмотря на то что температура подшипников очень высока. Образовавшиеся частицы льда-VII, обладающие огромной твердостью, начнут разрушать вал и подшипник и быстро выведут их из строя.

Может быть, лед и в космосе есть?

Как будто бы есть, и при этом очень странный. Но открыли его ученые на Земле, хотя такой лед на нашей планете существовать не может. Плотность всех известных в настоящее время льдов даже при очень высоких давлениях, лишь очень немного превышает 1 г/см3. Плотность гексагональной и кубической модификации льда при очень низких давлениях и температурах, даже близких к абсолютному нулю, немного меньше единицы. Их плотность равна 0,94 г/см3.

Но оказалось, что в вакууме, при ничтожных давлениях и при температурах ниже -170° С, при условиях, когда образование льда происходит при его конденсации из пара на охлаждаемой твердой поверхности, возникает совершенно удивительный лед. Его плотность… 2,3 г/см3. Все известные до сих пор льды кристаллические, а этот новый лед, по-видимому, аморфный, он характеризуется беспорядочным относительным расположением отдельных молекул воды; определенная кристаллическая структура у него отсутствует. По этой причине его иногда называют стеклянным льдом. Ученые уверены, что этот удивительный лед должен возникать в космических условиях и играть большую роль в физике планет и комет. Открытие такого сверхплотного льда было для физиков неожиданным.

Что нужно, чтобы лед растаял?

Очень много тепла. Гораздо больше, чем для плавления такого лее количества любого другого вещества. Исключительно большая удельная теплота плавления -80 кал (335 Дж) на грамм льда — таклее аномальное свойство воды. При замерзании воды такое нее количество тепла снова выделяется.

Когда наступает зима, образуется лед, выпадает снег и вода отдает обратно тепло, подогревает землю и воздух. Они противостоят холоду и смягчают переход к суровой зиме. Благодаря этому замечательному свойству воды на нашей планете существует осень и весна.

Сколько тепла нужно, чтобы нагреть воду?

Очень много. Больше, чем для нагревания равного количества любого другого вещества. Чтобы нагреть грамм воды на один градус, необходима одна калория (4,2 Дж). Это больше чем вдвое превышает теплоемкость любого химического соединения.

Вода — вещество, необычайное далее в самых обыденных для нас свойствах. Конечно, эта способность воды имеет очень большое значение не только при варке обеда на кухне. Вода — это великий распределитель тепла по Земле. Нагретая Солнцем под экватором, она переносит тепло в Мировом океане гигантскими потоками морских течений в далекие полярные области, где жизнь возможна только благодаря этой удивительной особенности воды.

Почему в море вода соленая?

Это, пожалуй, одно из самых важных следствий одного из самых удивительных свойств воды. В ее молекуле центры положительных и отрицательных зарядов сильно смещены относительно друг друга. Поэтому вода обладает исключительно высоким, аномальным значением диэлектрической проницаемости. Для воды е = 80, а для воздуха и вакуума е = 1. Это значит, что два любых разноименных заряда в воде взаимно притягиваются друг к другу с силой, в 80 раз меньшей, чем в воздухе. Ведь по закону Кулона:

Но все же межмолекулярные связи во всех телах, определяющие прочность тела, обусловлены взаимодействием между положительными зарядами атомных ядер и отрицательными электронами. На поверхности тела, погруженного в воду, силы, действующие между молекулами или атомами, ослабевают под влиянием воды почти в сотню раз. Если оставшаяся прочность связи между молекулами становится недостаточной, чтобы противостоять действию теплового движения, молекулы или атомы тела начинают отрываться от его поверхности и переходят в воду. Тело начинает растворяться, распадаясь либо на отдельные молекулы, как сахар в стакане чаю, либо на заряженные частицы — ионы, как поваренная соль.

Именно благодаря аномально высокой диэлектрической проницаемости вода — один из самых сильных растворителей. Она даже способна растворить любую горную породу на земной поверхности. Медленно и неотвратимо она разрушает даже граниты, выщелачивая из них легкорастворимые составные части.

Ручьи, речки и реки сносят растворенные водой примеси в океан. Вода из океана испаряется и вновь возвращается на землю, чтобы снова и снова продолжать свою вечную работу. А растворенные соли остаются в морях и океанах.

Не думайте, что вода растворяет и сносит в море только то, что легко растворимо, и что в морской воде содержится только обычная соль, которая стоит на обеденном столе. Нет, морская вода содержит в себе почти все элементы, существующие в природе. В ней есть и магний, и кальций, и сера, и бром, и йод, и фтор. В меньшем количестве в ней найдены железо, медь, никель, олово, уран, кобальт, даже серебро и золото. Свыше шестидесяти элементов нашли химики в морской воде. Наверное, будут найдены и все осталь ные. Больше всего в морской воде поваренной соли. Поэтому вода в море соленая.

Можно ли бегать по поверхности воды?

Можно. Чтобы в этом убедиться, посмотрите летом на поверхность любого пруда или озера. По воде не только ходит, но и бегает немало живого и быстрого народца. Если учесть, что площадь опоры лапок у этих насекомых очень мала, то нетрудно понять, что, несмотря на их небольшой вес, поверхность воды выдерживает, не прорываясь, значительное давление.

Может ли вода течь вверх?

Да, может. Это происходит всегда и повсеместно. Сама поднимается вода вверх в почве, смачивая всю толщу земли от уровня грунтовых вод. Сама поднимается вода вверх по капиллярным сосудам дерева и помогает растению доставлять растворенные питательные вещества на большую высоту — от глубоко скрытых в земле корней к листьям и плодам. Сама движется вода вверх в порах промокательной бумаги, когда вам приходится высушивать кляксу, или в ткани полотенца, когда вытираете лицо. В очень тонких трубочках — в капиллярах — вода может подняться на высоту до нескольких метров.

Чем это объясняется?

Еще одной замечательной особенностью воды — ее исключительно большим поверхностным натяжением. Молекулы воды на ее поверхности испытывают действие сил межмолекулярного притяжения только с одной стороны, а у воды это взаимодействие аномально велико. Поэтому каждая молекула на ее поверхности втягивается внутрь жидкости. В результате возникает сила, стягивающая поверхность жидкости, У воды она особенно велика: ее поверхностное натяжение составляет 72 мН/м (миллиньютона на метр).

Может ли вода помнить?

Такой вопрос звучит, надо признать, очень необычно, но он вполне серьезен и очень важен. Он касается большой физико-химической проблемы, которая в своей наиболее важной части еще не исследована. Этот вопрос только поставлен в науке, но ответа на него она еще не нашла.

Вопрос в том: влияет или нет предыдущая история воды на ее физико-химические свойства и возможно ли, исследуя свойства воды, узнать, что происходило с ней ранее, — заставить саму воду «вспомнить» и рассказать нам об этом. Да, возможно, как это ни кажется удивительным. Проще всего это можно понять на простом, но очень интересном и необычайном примере — на памяти льда.

Лед — это ведь вода. Когда вода испаряется — меняется изотопный состав воды и пара. Легкая вода испаряется хотя и в ничтожной степени, но быстрее тяжелой.

При испарении природной воды состав изменяется по изотопному содержанию не только дейтерия, но и тяжелого кислорода. Эти изменения изотопного состава пара очень хорошо изучены, и так же хорошо исследована их зависимость от температуры.

Недавно ученые поставили замечательный опыт. В Арктике, в толще огромного ледника на севере Гренландии, была заложена буровая скважина и высверлен и извлечен гигантский ледяной керн длиной почти полтора километра. На нем были отчетливо различимы годичные слои нараставшего льда. По всей длине керна эти слои были подвергнуты изотопному анализу, и по относительному содержанию тяжелых изотопов водо рода и кислорода — дейтерия и 18О были определены температуры образования годичных слоев льда на каждом участке керна. Дата образования годичного слоя определялась прямым отсчетом. Таким образом была восстановлена климатическая обстановка на Земле на протяжении тысячелетия. Вода все это сумела запомнить и записать в глубинных слоях гренландского ледника.

В результате изотопных анализов слоев льда была построена учеными кривая изменения климата на Земле. Оказалось, средняя температура у нас подвержена вековым колебаниям. Было очень холодно в XV в., в конце XVII в. и в начале XIX. Самые жаркие годы были 1550 и 1930.

Тогда в чем же состоит загадка «памяти» воды?

Дело в том, что за последние годы в науке постепенно накопилось много поразительных и совершенно непонятных фактов. Одни из них установлены твердо, другие требуют количественного надежного подтверждения, и все они еще ждут своего объяснения.

Например, еще никто не знает, что происходит с водой, протекающей сквозь сильное магнитное поле. Физики-теоретики совершенно уверены, что ничего с ней при этом происходить не может и не происходит, подкрепляя свою убежденность вполне достоверными теоретическими расчетами, из которых следует, что после прекращения действия магнитного поля вода должна мгновенно вернуться в прежнее состояние и остаться такой, какой была. А опыт показывает, что она изменяется и становится другой.

Велика ли разница? Судите сами. Из обычной воды в паровом котле растворенные соли, выделяясь, отлагаются плотным и твердым, как камень, слоем на стенках котельных труб, а из омагниченной воды (так ее теперь стали называть в технике) выпадают в виде рыхлого осадка, взвешенного в воде. Вроде разница невелика. Но это зависит от точки зрения. По мнению работников тепловых электростанций, эта разница исключительно валена, так как омагниченная вода обеспечивает нормальную и бесперебойную работу гигантских электростанций: не зарастают стены труб паровых котлов, выше теплопередача, больше выработка электроэнергии. На многих тепловых станциях давно установлена магнитная подготовка воды, а как и почему она работает, не знают ни инженеры, ни ученые. Кроме того, на опыте подмечено, что после магнитной обработки воды в ней ускоряются процессы кристаллизации, растворения, адсорбции, изменяется смачивание… правда, во всех случаях эффекты невелики и трудно воспроизводимы.

Действие магнитного поля на воду (обязательно быстротекущую) длится малые доли секунды, а «помнит» вода об этом десятки часов. Почему — неизвестно. В этом вопросе практика далеко опередила науку. Ведь далее неизвестно, на что именно действует магнитная обработка — на воду или на содержащиеся в ней примеси. Чистой-то воды ведь не бывает.

«Память» воды не ограничивается только сохранением последствий магнитного воздействия. В науке существуют и постепенно накапливаются многие факты и наблюдения, показывающие, что вода как будто бы «помнит» и о том, что она раньше была заморожена.

Талая вода, недавно получившаяся при таянии куска льда, как будто бы тоже отличается от той воды, из которой этот кусок льда образовался. В талой воде быстрее и лучше прорастают семена, быстрее развиваются ростки; далее как будто бы быстрее растут и развиваются цыплята, которые получают талую воду. Кроме удивительных свойств талой воды, установленных биологами, известны и чисто физико-химические отличия, например талая вода отличается по вязкости, по значению диэлектрической проницаемости. Вязкость талой воды принимает свое обычное для воды значение только через 3-6 суток после плавления. Почему это так (если это так), толее никто не знает.

Большинство исследователей называют эту область явлений «структурной памятью» воды, считая, что все эти странные проявления влияния предыдущей истории воды на ее свойства объясняются изменением тонкой структуры ее молекулярного состояния. Может быть, это и так, но… назвать — это еще не значит объяснить. По-прежнему в науке существует важная проблема: почему и как вода «помнит», что с нею было.

Физико-химические свойства воды

  • Вода — это прозрачная жид- кость без запаха, вкуса, а в малом объеме и без цвета, Молекулярная масса воды — 18,0160, химическая формула — Н2О. Максимальная плотность дистиллированной воды — 1 г/см куб. при температуре 3,982 гр. С и нормальном давлении 1 атм.
  • Вода — единственное известное нам вещество, которое встречается в естественных условиях на поверхности Земли в твердом, жидком и газообразном состоянии.
  • Вода — уникальный растворитель. Она растворяет больше солей и прочих веществ, чем любая другая жидкость.
  • Воду очень трудно окислить, сжечь или разложить на составные части. Вода — химически стойкое вещество.
  • Вода окисляет почти все металлы и разрушает даже самые твердые горные породы.
  • Вода имеет редкую способность при замерзании расширяться, вследствие чего лед плавает на воде, остающейся в жидкой фазе. Только немногие вещества (висмут, галлий, германий и др.) имеют такую же аномалию, при которой твердая фаза легче жидкой.
  • Вода в форме сферических капель имеет наименьшую поверхность при заданном объеме. Поверхностное натяжение (на границе с воздухом при 20 гр. С равно 72,75 дин/см) является необходимым условием капиллярных процессов, столь важных для жизнедеятельности растений и животных.
  • Пресная вода замерзает не при температуре наибольшей плотности (4 гр. С), а при 0 гр.С.
  • Вода обладает способностью поглощать большое количество теплоты и сравнительно мало при этом нагреваться. У воды очень высокая скрытая теплота плавления льда (79 кал/г) и испарения (539 кал/г при 100 гр. С), т. е. она поглощает значительное количество дополнительной теплоты при неизменности температуры в процессе замерзания и при кипении.
  • Дистиллированная вода очень плохо проводит электрический ток, но даже весьма малые добавки солей превращают ее в хороший проводник.
  • Удельная теплоемкость воды выше, чем у большинства веществ (кроме водорода и аммиака): при 100 гр. С=0,487 кал/г- град, а при 15 гр. С=1,000 кал/г град. Плавление льда сопровождается увеличением его удельной теплоемкости почти вдвое. С повышением температуры теплоемкость воды уменьшается и только после 40 гр. С начинает увеличиваться.
  • Температура замерзания воды понижается при увеличении давления примерно на 1 гр. С на каждые 130 атм. и достигает минимума (-22 гр. С) при давлении 2200 атм. При дальнейшем увеличении давления температура замерзания увеличивается и может стать выше 0 гр. (при очень большом давлении).
  • Температура кипения воды равна 100 гр. С при нормальном давлении 1 атм., но, учитывая, что водород кипит при — 253 гр. С, а кислород — при -180 гр. С, вода должна кипеть в пределах от 100 до 150 гр. С.
  • Диэлектрическая проницаемость воды (Е в единицах СГСЭ) 81,0 при 20 гр. С (это объясняет наличие у воды особых свойств, в частности способности растворять многие вещества). У большинства других тел она находится в пределах 2 — 3, за исключением ряда кислот (муравьиная — 58, ацетон — 21) и цианистого водорода, у которого диэлектрическая проницаемость 107.
  • Коэффициент преломления света в воде при 20 гр. С = 1,3330, в то время как по волновой теории света (n=VЕ) он должен быть равен 9.
  • Вода способна к полимеризации — соединению большого числа молекул обычной воды. Такая поливода имеет ряд совершенно новых физических свойств, в частности, она кипит при температуре в 4-5 раз более высокой, чем обычная.
  • Скорость звука в пресной воде около 1450 м/с, в морской при 25 С — 1496 м/с.
  • Вязкость при 20 гр. С=1,005 сантипуаза (спз). При О гр. С вязкость чистой воды 1,789 спз, а при 100 гр. С — только 0,282, т. е. в 6 раз меньше. Вязкость водяного пара при 15 гр. С всего 0,006 спз, т.е. значительно меньше, чем у воды при той же температуре.
  • рН дистиллированной воды при 20 гр. С равен 7. При нагревании рН уменьшается и при 100 гр. С, например, рН равен 6.
  • При давлении 1 атм. и температуре 100 гр. С из 1 л воды образуется 1600 л пара. У воды есть и ряд других свойств, которые уже известны и которые еще предстоит узнать.

Физические и химические свойства воды

Важнейшим ресурсом, также необходимым для основного устойчивого развития человека, является вода. Прежде чем мы обсудим воду, давайте познакомимся с некоторыми ключевыми статистическими данными о воде. Вот некоторые из них: 

  • В среднем человек использует 101 галлон воды в день, т. е. 380 литров воды в день.

  • 68% запасов пресной воды Земли находится в ледниках

  • 85% человеческого мозга состоит из воды

Что такое вода?

Вода, также известная как \[H_{2}O\], представляет собой вещество, состоящее из химических элементов водорода (\[H_{2}\]) и кислорода (\[O_{2} \]). Как полярное неорганическое соединение вода представляет собой бесцветную жидкость без вкуса и запаха. Вода, как наиболее изученное химическое соединение, известна как универсальный растворитель. Это единственное вещество, которое существует во всех трех агрегатных состояниях – твердом, жидком и газообразном. Считалось, что жизнь на Земле зародилась в водоемах мира, таких как океаны, реки, озера.

Как образуется молекула воды?

Молекула воды образуется при химической связи водорода и кислорода. Вода — лучший пример полярной ковалентной связи. Это означает химическую связь, при которой электроны неравномерно делят атомы. Каждая молекула воды ковалентно связана с двумя атомами водорода и одним атомом кислорода, реакция может быть записана следующим образом:

\[H_{2} + O_{2} \rightarrow H_{2}O \]

Какие состояния воды?

Как уже говорилось, вода является единственным веществом, которое существует во всех трех агрегатных состояниях: твердом, жидком и газообразном. Первое состояние воды в твердом состоянии — это лед. Как твердое вещество, вода доступна в виде твердого амальгамированного кристалла, называемого льдом, и рыхлого амальгамированного кристалла, называемого снегом. Наиболее часто видимым состоянием воды, которое является вторым состоянием, в атмосфере Земли является жидкость, известная как «вода». Третье состояние воды в газообразном состоянии называется водяным паром или паром. Это состояние воды, когда образуются облака — из мельчайших капелек воды, взвешенных в воздухе.

Какая связь между гидрологическим циклом и состоянием воды?

Гидрологический цикл – это общий круговорот природы, при котором водный поток регулируется в различных состояниях воды, что делает его переносимым для всех форм жизни на Земле. Это усиливается за счет наличия воды во всех штатах. Кроме того, процесс испарения, осаждения и конденсации облегчает транспортировку воды по разным формам рельефа.

Жидкое состояние воды водоемов – океанов, рек, озер и т.п. переходит в газообразное состояние, называемое водяным паром, в результате процесса испарения. Далее вода конденсируется вместе, образуя крошечные капельки водяного пара, называемые облаками. Кроме того, облака осаждаются в виде воды в жидком состоянии, известной как дождь. Эта вода в жидком состоянии используется формами жизни для различных целей, а оставшаяся вода собирается обратно в водоемы.

Каковы свойства воды?

Свойства соединения – воду можно разделить на: 

Давайте продолжим и сосредоточимся на физических и химических свойствах воды: 

Физические свойства воды

  • Внешний вид: Как вы уже знаете, вода бесцветная жидкость без запаха и вкуса в естественном состоянии. Кристаллическая структура воды шестиугольная.

  • Температура кипения воды: Температура кипения определяется как температура, при которой давление паров жидкости равно давлению, окружающему жидкость, и, таким образом, жидкость превращается в пар. Нам известно, что температура кипения воды равна 100°С.

  • Точка замерзания воды: Точка замерзания – это температура, при которой вещество переходит из жидкого состояния в твердое. Итак, для воды точка, в которой вода из жидкого состояния превращается в лед в твердом состоянии, является точкой замерзания воды, которая составляет 0°C или 32°F.

  • Удельная теплоемкость: Вода имеет высокую удельную теплоемкость 4,2 Дж на грамм при 25°C. Это связано с обширными водородными связями между молекулами воды.

  • Плотность воды: Плотность воды составляет около 1 г/см3 и изменяется в зависимости от температуры необычным образом. Плотность воды в разных состояниях – твердом и жидком. В твердом состоянии плотность составляет 0,9 г/см3.

  • Вязкость воды: Вязкость определяется сопротивлением деформации при заданной скорости. Другими словами, густота жидкости — например, сиропа и воды. Вязкость воды составляет 0,89 сП (сантипуаз).

  • Поверхностное натяжение воды: Поверхностное натяжение – это тенденция жидкости сжиматься на минимальной площади поверхности. Вода имеет высокое поверхностное натяжение 72 мН/м при 25°C. Из-за высокого поверхностного натяжения воды насекомые могут ходить по поверхности воды без какого-либо дискомфорта.

  • Показатель преломления воды: Проще говоря, показатель преломления — это число, которое описывает, как быстро свет достигает материала. Показатель преломления воды составляет 1,333 при 20°С.

  • Сжимаемость воды: Сжимаемость определяется как функция температуры и давления и их влияние на вещество. Для воды сжимаемость при 0°C составляет \[5,1 \times 10 — 10 Pa — 1\], а до 45°C она снижается до \[ 4,4 \times 10 — 10 Pa — 1\]. По мере увеличения давления сжимаемость еще больше снижается.

  • Диэлектрическая проницаемость воды: Диэлектрическая проницаемость является мерой того, насколько легко материал поляризуется электрическим полем. Диэлектрическая проницаемость воды очень высока и составляет 78,6. Эта константа играет очень важную роль в воде, являющейся универсальным растворителем.

Химические свойства воды

Химическая формула: Химическая формула воды \[H_{2}O\]. Как было описано ранее, молекула воды образована ковалентной связью атомов водорода и кислорода.

Амфотерность воды: Амфотерность — одно из важнейших свойств воды. Амфотерность означает способность вещества действовать как кислота или основание. Вода в естественном состоянии не является ни кислой, ни щелочной. Основная причина заключается в его способности отдавать и принимать протоны. Однако дождевая вода слабокислая, с pH от 5,2 до 5,8.

Растворимость воды: Вода считается универсальным растворителем. Это связано с химическим составом и физическими свойствами, а также с его высокой диэлектрической проницаемостью, что делает его наиболее растворимым веществом. Наличие положительных и отрицательных зарядов у водорода и кислорода соответственно позволяет ему притягиваться к другим молекулам соединений, нарушая их молекулярные силы и позволяя им распадаться и растворяться.

Химическое соединение, состоящее из двух атомов водорода и одного атома кислорода, известно как вода. Воду обычно называют жидким состоянием этого соединения, твердую фазу называют льдом, а газ называют паром. Сверхкритический флюид также образуется водой при особых условиях. В химии формула воды — \[H_{2}O\].

Формула воды

\[H_{2}O\] — это химическая формула воды, состоящая из двух элементов: водорода и кислорода. Чтобы образовалась вода, две молекулы водорода соединяются с одной молекулой кислорода. Вода также известна как универсальный растворитель, что указывает на то, что она обладает свойством растворять многие вещества.

Физические свойства воды

Некоторые физические свойства воды:

  1. Молекулы воды имеют водородные связи между собой.

  2. Температура кипения и плавления воды составляет 100° и 0°C соответственно.

  3. Три состояния воды: твердое, жидкое и газообразное.

  4. Вода имеет полярную природу, из-за которой она может растворять почти все вещества, поэтому ее называют универсальным растворителем.

  5. В твердом состоянии вода имеет кристаллическую структуру, которая представляет собой клетку в виде трехмерной структуры. Кристаллическая структура воды имеет много пустот, из-за которых плотность льда меньше, чем у воды, и, следовательно, он может плавать на воде.

  6. Известно, что плотность воды составляет 0,0,99 г/мл при 4 °C.

 

Физические свойства воды{-}\]

  1. Гидролиз. Диэлектрическая проницаемость воды очень высока, что означает сильную тенденцию к гидратации. При наличии вокруг себя гидратных оболочек вода вступает в сильные реакции с ионами солей.

\[SiCl_{4} + 2H{2}O \rightarrow  SiO_{2} 4HCl \]

  1. Окислительно-восстановительные реакции — Диводород можно получить из воды, так как он является отличным источником и может быть восстановлен при реагирует с высоко электроположительным металлом, таким как натрий.

\[H_{2}O + Na \rightarrow 2NaOH + H_{2}\]

Физические и химические свойства воды

вода соответствует нормативным требованиям, безопасна для человека и окружающей среды.

Физические характеристики воды включают температуру, цвет, вкус и запах пробы воды. Химические свойства воды включают такие параметры, как рН и растворенный кислород. Мониторинг этих характеристик помогает определить, соответствует ли вода государственным нормам и безопасна ли она для потребления человеком и окружающей среды.

Физические характеристики качества воды

Необходимо контролировать физические аспекты качества воды, чтобы определить, загрязнена она или нет. Физические характеристики можно определить по:

  • Цвет – чистая вода бесцветна; окрашенная вода может указывать на загрязнение. Цвет также может показывать органические вещества. Максимально допустимый уровень цветности питьевой воды составляет 15 TCU (единица истинного цвета).
  • Мутность – чистая вода прозрачна и не поглощает свет. Если в воде появилось помутнение, это может свидетельствовать о загрязнении воды.
  • Вкус и запах – чистая вода всегда без вкуса и запаха. Если присутствует какой-либо вкус и запах, это может указывать на загрязнение воды.
  • Температура – ​​температура напрямую не используется для оценки пригодности воды для питья. Однако в естественных водных системах, таких как озера и реки, температура является важным физическим фактором, определяющим качество воды.
  • Твердые вещества — если вода фильтруется для удаления взвешенных твердых частиц, оставшееся твердое вещество в воде указывает на общее количество растворенных твердых веществ. Если растворенные в воде твердые вещества превышают 300 мг/л, это оказывает неблагоприятное воздействие на живые организмы, а также на промышленные продукты.

Химические свойства воды

Химические свойства воды включают оценку таких параметров, как pH и растворенный кислород:

  • pH – рН воды измеряется в диапазоне от 0 до 14, чтобы определить, насколько она кислая или щелочная.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *